Browse > Article
http://dx.doi.org/10.3831/KPI.2011.14.3.005

The Effect of Intravenous Injection of the Water Extract of Angelica gigas Nakai on Gliosis in the Middle Cerebral Artery Occlusion Rats  

Song, Bong-Keun (Department of Internal Medicine, Wonkwang University College of Oriental Medicine)
Jeon, Yong-Cheol (Department of Internal Medicine, Wonkwang University College of Oriental Medicine)
Kim, Sun-Ae (Department of Clinical Laboratory, Wonkwang University Medical Center)
Shim, An-Na (Department of Clinical Laboratory, Wonkwang University Medical Center)
Seong, Kee-Moon (Department of Internal Medicine, Wonkwang University College of Oriental Medicine)
Lee, Eon-Jeon (Department of Internal Medicine, Wonkwang University College of Oriental Medicine)
Publication Information
Journal of Pharmacopuncture / v.14, no.3, 2011 , pp. 5-17 More about this Journal
Abstract
Objectives : Gliosis becomes physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by middle cerebral artery occlusion is involved with up-regulation of CD81 and GFAP (Glial fibrillary acidic protein). The current study is to examine the effect of the Angelica gigas Nakai(intravenous injection. 100 mg/kg twice in a day) on CD81 and GFAP of the rat in the brain after middle cerebral artery occlusion. Methods : Cerebral infarction was induced by middle cerebral artery occlusion. And after intravenous injection of water extract of Angelica gigas Nakai, the size of cerebral infarction was measured. Examination of optical microscope were also used to detect the expression of CD81 and GFAP in the brain of the rat. Results : The following results were obtained : We found that size of cerebral infarcion induced by MCAO (Middle Cerebral Artery Occlusion) in rats were decreased after intravenous injection of Angelica gigas Nakai. We injected the extract of Angelica gigas Nakai to the MCAO in rats, and the optical microscope study showed that Angelica gigas Nakai had effect on protecting the cells of hippocampus. We found that GFAP, CD81 and ERK of the brain in rats with cerebral infarction after MCAO were meaningfully decreased after intravenous injecting Angelica gigas Nakai. We found that c-Fos expression of the brain in rats with cerebral infarction after MCAO were significantly increased after intravenous injecting Angelica gigas Nakai. Conclusions : These results indicate that Angelica gigas Nakai could suppress the reactive gliosis, which disturbs the astrocyte regeneration in the brain of the rat with cerebral infarction after MCAO by controlling the expression of CD81 and GFAP. And the effect may be modulated by the up-regulation of c-Fos and ERK.
Keywords
Angelica gigas Nakai; gliosis; CD81; GFAP; MCAO; Astrocyte; c-Fos; ERK;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Aghazadeh-Habashi A, Ibrahim A, Carran J, Anastassiades T, Jamali F.Single Dose Pharmacokinetics and Bioavailability of Glucosamine in the Rat. J Pharm Pharmaceut Sci. 2002;5(2):181-184.
2 Choi MS, Lee YH, Shim CK. Bioavailabilities of Omeprazole administered to rats through various routes. Arch Pharm Res. 1995 18(3):141-145.   과학기술학회마을   DOI
3 Puchala E, Windle WF. The possibility of structural and functional restitution after spinal cord injury. A review Exp Neurol. 1977;55(1):1-42.   DOI   ScienceOn
4 Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one-years (1969-2000). Neurochemical Res. 2000;25(9-10):1439-51.   DOI   ScienceOn
5 Sarthy V, Ripps H. The Retinal muller cell-structure and Function. Kluwer Academic/Plenum Press, New york, NY. 2001.
6 Menet V, Gimenez Y, Ribotta M, Sandillon F, Privat A. GFAP null astrocytes are a favorable substrate for neuronal survival and neurite growth. Glia. 2000;31(3):267-72.   DOI   ScienceOn
7 Hann CK, Ahn DK. A Study on the Decursin content of Dang-Gwi and it's Effect on the Hematopoiesis in Anemic Rabbit. Journal of Kyung hee University Oriental Medical School. 1983;6(1):153-67.
8 Bradley RR, cuunniff PJ, Pereira BJ. Hemoatopoietic effect of Radix angelicase sinensis in a hemodialysis patient. Am J Kidney Dis. 1999;34(2):349-54.   DOI   ScienceOn
9 Liao JF, Jan YM, Huang SY, Wang HH, Yu LL, Chen CF. Evaluation With receptor binding assay on the water extracts of ten-active herbal drugs. Proc Natl Sci Counc Repub China B. 1995;19(3):151-58.
10 Hu H, Hang B, Wang P. Anti-inflammatory effect of radix Angelicase sinensis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih. 1999;16(11):684-86, 704.
11 Sung IH, Chae WS. The effect of Aquaacupuncture of Radix Corydalis and Radix Angelica in endotoxin induced thrombosis in mice. The journal of Korean acupuncture and moxibustion society. 1994;11(1):392-404.
12 Kim GS, Kim MD, Kim Y, Kim JH, Kim JH, Lee WC, Lim YG, Jung CG. Practical Clinical Guide for Western and Oriental Medicine. Seoul: Jung Dam Books. 2001;3:22-30.
13 Kamii H, Kinouchi H, Sharp FR, Epstein CJ, Sagar SM, Chan PH. Expression of c-fos mRNA after a mild focal cerebral ischemia in SOD-1 transgenic mice. Brain Res. 1994;662(1-2):240-4.   DOI   ScienceOn
14 Dijkstra S, Duis S, Pans IM, Lankhorst AJ, Hamers FP, Veldman H, Bar PR, Gispen WH, Joosten EA, Geisert EE Jr. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol. 2006;202(1):57-66.   DOI   ScienceOn
15 Herrera DG, Robertson HA. Activation of c-fos in the brain. Prog Neurobiol. 1997;50(2-3):83-107.   DOI   ScienceOn
16 Onodera H, Kogure K, Ono Y, Igarishi K, Kiyota Y, Nagaoka A. Proto-oncogene c-fos is transiently induced in the rat cerebral cortex after forebrain ischemia. Neurosci. L.eff. 1998;98(1):101-4.   DOI   ScienceOn
17 Masuhara K, Ohmichi M, Kurachi H, Tasaka K, Kanzaki T, Kimura A, Hayakawa J, Hisamoto K, Koike K, Murata Y. Involvement of extracellular signal-regulated protein kinase in gliosis induced during recovery from metabolic inhibition. Biochem Biophys Res Commun. 2000;267(3):892-96.   DOI   ScienceOn
18 Wu YC et al. Pharmacological effectgs of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin Med. 2011;6(1):32.   DOI   ScienceOn
19 Berry M, Maxwell WL, Logan A, Mathewson A, McConnell P, Ashhurst DE, Thomas GH. Deposition of scar tissue in the central nervous system. Acta Neurochir Suppl. 1983;32:31-5.   DOI
20 Kim KM, Kim MJ, Kang JS. Absorption, distribution, metabolism, and excretion of decursin and decursinol angelate from Angelica gigas Nakai. J Microbiol Biotechnol. 2009;19(12):1569-72.   과학기술학회마을   DOI   ScienceOn
21 Fawcett JW, Asher RA. The glial scar and CNS repair. Brain Res Bull. 1999;49(6):377-91.   DOI   ScienceOn
22 Asher RA, Fidler PS, Morgenstern DA, Adcock KH, Oohira A, Rogers JH, Fawcett JW. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. 2000;20(7):2427-38.   DOI
23 Moon LD, Brecknell JE, Franklin RJ, Dunnett SB, Fawcett JW. Robust regeneration of CNS axons through a track depleted of CNS glia. Exp Neurol. 2000;161(1):49-66.   DOI   ScienceOn
24 Lee SI. Ahn DG, Shin MG. Clincal Application of Herbal Medicine. Seoul: Traditional Medicine Research Center. 1993:357-58.
25 Son SY. Shennong Ben Cao Jing. Taipei: Wungwang Publishing Co. 1971:24.
26 Herbology Professors Association. Clinical Herbology. Seoul: Younglimsa. 1995:578-80.
27 Li SZ. Ben Cao Gang Mu. Beijing: People's Medical Publishing House. 1982:833-37.
28 Jung JU. Neuroprotective effect of Angelica gigas on focal cerebral infarction in the mouse. Gyungsan University Graduate School. Dissertation for Master Degree. 2000.
29 Jun YY, Park CS, Park CG. An experimental study of effect on brain damage and neuroprotective effect of Angelicae gigantis radix extract against cerebral ischemia in rats. The Korean Journal of Herbology. 2003;18(4):25-35.   과학기술학회마을
30 Yang JW, Ouyang JP, Liao WJ, Tian J, Liu YM, Wei L, Wang BH, Li K.The effects of Chinese herb Angelica in focal cerebral ischemia injury in the rat. Clin Hemorheol Microcirc. 2005;32(3):209-15.
31 Chen F, Yan ZK, Yang B. Effects of acupoint-injection of compound Angelica-root Injectio on cerebral Bcl-2 and Bax immunoactivity and hemorheology in rats with cerebral ischemia-reperfusion injury. Zhen Ci Yan Jiu. 2011;36(2):85-9.
32 Liao WJ, Fan M, Yang YH, Yang WT and Liu ML: Effects of Angelica sinensis injection on the neuronal metabolites and blood flow speed within reperfusion following the ischemic cerebral injury in rats. Zhongguo Yingyong Shenglixue Zazhi 2003;19(3):209-212.
33 Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendhl U, Betsholtz C, Berthold CH, Frisen J. Abnormal reation to central nervous system injury to central nervous system injury in mice lacking glial fibrilary acidic protein and vimentin. J Cell Biol. 1999;145:503-14.   DOI   ScienceOn
34 Kwon OK. Alteration of recovery of motor function and glial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in the rats. Gradutae School of Konkuk University. 2003.
35 Eddelstone M, Mucke L. Molecular profiles of reactive astrocytes-implication for their role neurologic disease. Neruosci. 1993;54(3):1536.
36 Schick MR, Nguyen VQ, Levy S. Anti-TAPA-1 antibodies induce protein tyrosine phosphorylation that is prevented by increasing intracellular thiol levels. J Immunol. 1993;151(4):1918-25.
37 Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem. 1997;272(5):2595-98.   DOI   ScienceOn
38 Yauch RL, Hemler ME. Specific interactions among transmembrane 4 superfamily(TM4SF) proteins and phosphoinositide 4-kinase. Biochem J. 2000;351(3):629-37.   DOI   ScienceOn
39 Lee SH, Moon SJ, Shin JB, Hae RK, Seong KM, Yag JH, Song BK. The Effect of the Water Extract of Angelica Sinens on Gliosis Repression of Astrocyte after Hypoxic injury. J Korean Oriental Med 2008;29(1):167-178.   과학기술학회마을
40 Han SG, Lee BL. Effects of Angelica gigas Nakai herbal acupuncture into Hyolhae(SP10) of brain ischemic injury induced by Intraluminal Filament insertion in the rats. The journal of Korean acupuncture and moxibustion society. 2004;21(2):1-20.
41 Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84-91.   DOI   ScienceOn
42 Zou S. Ben Jing Shu Zheng. Seoul:Daesung Medical. 2001:240-5.
43 Xu SN, Niu BZ. Chinese Traditional Medical Books Translation: Shennong Ben Cao Jing. Hebei:Hebei Science Technology Publising Co. 1997:68.
44 Oh MC, Ahn KS, Kim KH. Effects of Astragali Radix and Angelicae gigantis Radix on Immune Response in Mice. Journal of Kyunghee University Oriental Medical School. 1986;9(1):343-54.
45 The Korean Society of Pathologists. Pathology. Seoul: Komoonsa. 1990:1261-2.
46 Geisert EE Jr, Williams RW, Geisert GR, Fan L, Asbury AM, Maecker HT, Deng J, Levy S. Increased brain size and glial cell number in CD81-null mice. J Comp Neurol. 2002;453(1):22-32.   DOI   ScienceOn
47 Oren, R, Takahashi, S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10(8):4007-15.   DOI
48 Geisert EE Jr, Yang L, Irwin MH. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J Neurosci. 1996;16(17):5478-87.   DOI
49 Kelic S, Levy S, Suarez C, Weinstein DE. CD81 regulates neuron-induced astrocyte cell-cycle exit. Mol Cell Neurosci. 2001;17(3):551-60.   DOI   ScienceOn
50 Fidler PS, Schuette K, Asher RA, Dobberton A, Thornton SR, Calle-Patino Y, Muir E, Levine JM, Geller HM, Rogers JH, Faissner A, Fawcett JW. Comparing astrocytic cells lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan in NG2. J Neurosci. 1999;19(20):8778-88.   DOI
51 Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52(1):73-86.   DOI
52 Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20(2):519-30.
53 Gimenez Y, Ribotta M, Rajaofetra N, Morin-Richaud C, et al. Oxysterol(7beta-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res. 1995;41(1):79-95.   DOI   ScienceOn
54 Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16(10):851-63.   DOI
55 McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11(11):3398-411.   DOI
56 Statistics Korea. The cause of death statistics 2009.2009:6-12.
57 Anders JJ, Hurlock JA. Transplanted glial scar impedes olfactory bulb reinnervation. Exp Neurol. 1996;142(1):144-50.   DOI   ScienceOn
58 Bahr M, Przyrembel C, Bastmeyer M. Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons. Exp Neurol. 1995;131(2):211-20.   DOI   ScienceOn
59 Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci. 2001;58(9):1189-205.   DOI   ScienceOn
60 Song BK, Geisert GR, Vazquez-Chona F, Geisert EE Jr. Temporal regulation of CD81 following retinal injury in the rat. Neurosci Lett. 2003;338(1):29-32.   DOI   ScienceOn
61 Hemler ME. Specific tetraspanin functions. J. Cell Biol. 2001;155(7):1103-8.   DOI   ScienceOn
62 Levy S, Todd SC, Maecker HT. CD81 (TAPA-1): A molecule involved insignal transduction and cell adhesion in the immune system. Annu Rev Immunol. 1998;16:89-109.   DOI   ScienceOn