Browse > Article
http://dx.doi.org/10.3904/kjim.2015.30.2.148

Applications of systems approaches in the study of rheumatic diseases  

Kim, Ki-Jo (Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea)
Lee, Saseong (POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea)
Kim, Wan-Uk (POSTECH-CATHOLIC BioMedical Engineering Institute, The Catholic University of Korea)
Publication Information
The Korean journal of internal medicine / v.30, no.2, 2015 , pp. 148-160 More about this Journal
Abstract
The complex interaction of molecules within a biological system constitutes a functional module. These modules are then acted upon by both internal and external factors, such as genetic and environmental stresses, which under certain conditions can manifest as complex disease phenotypes. Recent advances in high-throughput biological analyses, in combination with improved computational methods for data enrichment, functional annotation, and network visualization, have enabled a much deeper understanding of the mechanisms underlying important biological processes by identifying functional modules that are temporally and spatially perturbed in the context of disease development. Systems biology approaches such as these have produced compelling observations that would be impossible to replicate using classical methodologies, with greater insights expected as both the technology and methods improve in the coming years. Here, we examine the use of systems biology and network analysis in the study of a wide range of rheumatic diseases to better understand the underlying molecular and clinical features.
Keywords
Systems biology; Network analysis; Rheumatic diseases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013;9:141-153.   DOI
2 Nakaoka H, Cui T, Tajima A, et al. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS One 2011;6:e25389.   DOI
3 Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003;426:454-460.   DOI   ScienceOn
4 Xing H, McDonagh PD, Bienkowska J, et al. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol 2011;7:e1001105.   DOI   ScienceOn
5 Schiff M. Abatacept treatment for rheumatoid arthritis. Rheumatology (Oxford) 2011;50:437-449.   DOI   ScienceOn
6 Yoon HJ, You S, Yoo SA, et al. NF-AT5 is a critical regulator of inf lammatory arthritis. Arthritis Rheum 2011;63:1843-1852.   DOI   ScienceOn
7 Wu G, Zhu L, Dent JE, Nardini C. A comprehensive molecular interaction map for rheumatoid arthritis. PLoS One 2010;5:e10137.   DOI   ScienceOn
8 Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610-2615.   DOI   ScienceOn
9 Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711-723.   DOI   ScienceOn
10 Feng X, Wu H, Grossman JM, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum 2006;54:2951-2962.   DOI   ScienceOn
11 Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005;52:1491-1503.   DOI   ScienceOn
12 Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. Association of a gene expression prof ile from whole blood with disease activity in systemic lupus erythaematosus. Ann Rheum Dis 2008;67:1069-1075.   DOI   ScienceOn
13 Petri M, Singh S, Tesfasyone H, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus 2009;18:980-989.   DOI
14 Chaussabel D, Quinn C, Shen J, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008;29:150-164.   DOI   ScienceOn
15 Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 2014;66:1583-1595.   DOI   ScienceOn
16 Siddani BR, Pochineni LP, Palanisamy M. Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. PLoS One 2013;8:e81766.   DOI
17 Pflegerl P, Vesely P, Hantusch B, et al. Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling. Proc Natl Acad Sci U S A 2009;106:20423-20428.   DOI   ScienceOn
18 Jacob CO, Eisenstein M, Dinauer MC, et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A 2012;109:E59-E67.   DOI
19 Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 2011;6:593-601.   DOI
20 Romzova M, Hohenadel D, Kolostova K, et al. NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its microvascular and atherosclerotic complications. Hum Immunol 2006;67:706-713.   DOI   ScienceOn
21 Salvador JM, Hollander MC, Nguyen AT, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 2002;16:499-508.   DOI   ScienceOn
22 Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013;110:3507-3512.   DOI   ScienceOn
23 Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012;12:174-194.   DOI   ScienceOn
24 Berthier CC, Bethunaickan R, Gonzalez-Rivera T, et al. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J Immunol 2012;189:988-1001.   DOI   ScienceOn
25 Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007;369:1379-1390.   DOI   ScienceOn
26 Zhao J, Chen J, Yang TH, Holme P. Insights into the pathogenesis of axial spondyloarthropathy from network and pathway analysis. BMC Syst Biol 2012;6 Suppl 1:S4.
27 Sharma SM, Choi D, Planck SR, et al. Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression profiles. Arthritis Res Ther 2009;11:R168.   DOI   ScienceOn
28 Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol 2010;6:399-405.   DOI
29 Delany AM, Hankenson KD. Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 2009;3:227-238.   DOI   ScienceOn
30 Machado do Reis L, Kessler CB, Adams DJ, Lorenzo J, Jorgetti V, Delany AM. Accentuated osteoclastic response to parathyroid hormone undermines bone mass acquisition in osteonectin-null mice. Bone 2008;43:264-273.   DOI   ScienceOn
31 Gu J, Marker-Hermann E, Baeten D, et al. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford) 2002;41:759-766.   DOI   ScienceOn
32 Smith JA, Barnes MD, Hong D, DeLay ML, Inman RD, Colbert RA. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-gamma dysregulation. Arthritis Rheum 2008;58:1640-1649.   DOI   ScienceOn
33 Duan R, Leo P, Bradbury L, Brown MA, Thomas G. Gene expression prof iling reveals a downregulation in immune-associated genes in patients with AS. Ann Rheum Dis 2010;69:1724-1729.   DOI   ScienceOn
34 Gu J, Wei YL, Wei JC, et al. Identification of RGS1 as a candidate biomarker for undifferentiated spondylarthritis by genome-wide expression prof iling and real-time polymerase chain reaction. Arthritis Rheum 2009;60:3269-3279.   DOI   ScienceOn
35 Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science 2008;321:263-266.   DOI   ScienceOn
36 Assassi S, Reveille JD, Arnett FC, et al. Whole-blood gene expression prof iling in ankylosing spondylitis shows upregulation of toll-like receptor 4 and 5. J Rheumatol 2011;38:87-98.   DOI
37 Haroon N, Tsui FW, O'Shea FD, et al. From gene expression to serum proteins: biomarker discovery in ankylosing spondylitis. Ann Rheum Dis 2010;69:297-300.   DOI   ScienceOn
38 Gu J, Rihl M, Marker-Hermann E, et al. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol 2002;29:2159-2164.
39 Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148:1293-1307.   DOI   ScienceOn
40 Craig J. Complex diseases: research and applications. Nat Educ 2008;1:184.
41 Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56-68.   DOI   ScienceOn
42 Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of genome-wide association studies: where are we now? J Hum Genet 2010;55:195-206.   DOI   ScienceOn
43 Ormond KE, Wheeler MT, Hudgins L, et al. Challenges in the clinical application of whole-genome sequencing. Lancet 2010;375:1749-1751.   DOI   ScienceOn
44 Wang J, Zhang Y, Marian C, Ressom HW. Identification of aberrant pathways and network activities from high-throughput data. Brief Bioinform 2012;13:406-419.   DOI
45 Altman RB. Translational bioinformatics: linking the molecular world to the clinical world. Clin Pharmacol Ther 2012;91:994-1000.   DOI
46 Likic VA, McConville MJ, Lithgow T, Bacic A. Systems biology: the next frontier for bioinformatics. Adv Bioinformatics 2010;2010:268925.
47 Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 1999;402(6761 Suppl):C47-C52.   DOI   ScienceOn
48 Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA. Complexity in cancer biology: is systems biology the answer? Cancer Med 2013;2:164-177.   DOI
49 MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol 2012;9:172-184.   DOI
50 Furlong LI. Human diseases through the lens of network biology. Trends Genet 2013;29:150-159.   DOI   ScienceOn
51 You S, Cho CS, Lee I, Hood L, Hwang D, Kim WU. A systems approach to rheumatoid arthritis. PLoS One 2012;7:e51508.   DOI   ScienceOn
52 You S, Yoo SA, Choi S, et al. Identification of key regu lators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 2014;111:550-555.   DOI   ScienceOn
53 Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685-8690.   DOI   ScienceOn
54 Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat Biotechnol 2007;25:1119-1126.   DOI   ScienceOn
55 Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases. PLoS One 2011;6:e20284.   DOI
56 Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 2010;6:e1000662.   DOI   ScienceOn
57 Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013;8:e60618.   DOI
58 International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931-945.   DOI   ScienceOn
59 Stumpf MP, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci U S A 2008;105:6959-6964.   DOI   ScienceOn
60 Venkatesan K, Rual JF, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009;6:83-90.   DOI   ScienceOn
61 Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004;8:33-41.   DOI   ScienceOn
62 Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 2013;14:35-48.   DOI
63 Chiche L, Jourde-Chiche N, Pascual V, Chaussabel D. Current perspectives on systems immunology approaches to rheumatic diseases. Arthritis Rheum 2013;65:1407-1417.   DOI   ScienceOn
64 Sirota M, Butte AJ. The role of bioinformatics in studying rheumatic and autoimmune disorders. Nat Rev Rheumatol 2011;7:489-494.   DOI
65 Altman RB. Introduction to translational bioinformatics collection. PLoS Comput Biol 2012;8:e1002796.   DOI   ScienceOn
66 Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 2001;358:903-911.   DOI   ScienceOn
67 Moelants EA, Mortier A, Van Damme J, Proost P. Regulation of TNF-alpha with a focus on rheumatoid arthritis. Immunol Cell Biol 2013;91:393-401.   DOI   ScienceOn
68 Weinblatt ME, Keystone EC, Furst DE, et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 2003;48:35-45.   DOI   ScienceOn
69 Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther 2009;11 Suppl 1:S1.   DOI   ScienceOn
70 Tanaka Y. Next stage of RA treatment: is TNF inhibitor-free remission a possible treatment goal? Ann Rheum Dis 2013;72 Suppl 2:ii124-ii127.   DOI
71 Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999;340:253-259.   DOI   ScienceOn
72 Prince FH, Bykerk VP, Shadick NA, et al. Sustained rheumatoid arthritis remission is uncommon in clinical practice. Arthritis Res Ther 2012;14:R68.   DOI   ScienceOn
73 Klarenbeek NB, van der Kooij SM, Guler-Yuksel M, et al. Discontinuing treatment in patients with rheumatoid arthritis in sustained clinical remission: exploratory analyses from the BeSt study. Ann Rheum Dis 2011;70:315-319.   DOI   ScienceOn
74 Aguilar-Lozano L, Castillo-Ortiz JD, Vargas-Serafin C, et al. Sustained clinical remission and rate of relapse after tocilizumab withdrawal in patients with rheumatoid arthritis. J Rheumatol 2013;40:1069-1073.   DOI   ScienceOn
75 Toonen EJ, Barrera P, Radstake TR, et al. Gene expression profiling in rheumatoid arthritis: current concepts and future directions. Ann Rheum Dis 2008;67:1663-1669.   DOI   ScienceOn
76 Lipsky PE, van der Heijde DM, St Clair EW, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis: anti-tumor necrosis factor trial in rheumatoid arthritis with Concomitant Therapy Study Group. N Engl J Med 2000;343:1594-1602.   DOI   ScienceOn
77 Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol 2010;26:721-744.   DOI   ScienceOn
78 Sarkar IN, Butte AJ, Lussier YA, Tarczy-Hornoch P, Ohno-Machado L. Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc 2011;18:354-357.   DOI   ScienceOn
79 Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 2013;93:335-341.   DOI   ScienceOn
80 Finckh A, Simard JF, Gabay C, Guerne PA; SCQM physicians. Evidence for differential acquired drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann Rheum Dis 2006;65:746-752.   DOI   ScienceOn
81 Keystone E, Burmester GR, Furie R, et al. Improvement in patient-reported outcomes in a rituximab trial in patients with severe rheumatoid arthritis refractory to anti-tumor necrosis factor therapy. Arthritis Rheum 2008;59:785-793.   DOI   ScienceOn
82 Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 2012;18:871-882.   DOI   ScienceOn
83 Laukens D, Peeters H, Cruyssen BV, et al. Altered gut transcriptome in spondyloarthropathy. Ann Rheum Dis 2006;65:1293-1300.   DOI   ScienceOn
84 Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis 2009;68:1440-1446.   DOI   ScienceOn
85 Ding Y, Chen M, Liu Z, et al. atBioNet: an integrated network analysis tool for genomics and biomarker discovery. BMC Genomics 2012;13:325.   DOI
86 Pimentel-Santos FM, Ligeiro D, Matos M, et al. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011;13:R57.   DOI   ScienceOn
87 Schwanhausser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature 2011;473:337-342.   DOI   ScienceOn