Browse > Article
http://dx.doi.org/10.3904/kjim.2013.28.2.123

Carbon monoxide: present and future indications for a medical gas  

Ryter, Stefan W. (Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School)
Choi, Augustine M.K. (Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School)
Publication Information
The Korean journal of internal medicine / v.28, no.2, 2013 , pp. 123-140 More about this Journal
Abstract
Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., $H_2S$, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease.
Keywords
Acute lung injury; Carbon monoxide; Heme oxygenase (decyclizing); Reperfusion injury; Sepsis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Christou H, Morita T, Hsieh CM, et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 2000;86:1224-1229.   DOI
2 Minamino T, Christou H, Hsieh CM, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A 2001;98:8798-8803.   DOI
3 Yet SF, Perrella MA, Layne MD, et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 1999;103:R23-R29.   DOI
4 Zuckerbraun BS, Chin BY, Wegiel B, et al. Carbon monoxide reverses established pulmonary hypertension. J Exp Med 2006;203:2109-2119.   DOI
5 Wang X, Wang Y, Lee SJ, Kim HP, Choi AM, Ryter SW. Carbon monoxide inhibits Fas activating antibodyinduced apoptosis in endothelial cells. Med Gas Res 2011;1:8.   DOI
6 Morita T, Perrella MA, Lee ME, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc Natl Acad Sci U S A 1995;92:1475-1479.   DOI
7 Morita T, Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J Clin Invest 1995;96:2676-2682.   DOI
8 Kim HP, Wang X, Nakao A, et al. Caveolin-1 expression by means of p38beta mitogen-activated protein kinase mediates the antiproliferative effect of carbon monoxide. Proc Natl Acad Sci U S A 2005;102:11319-11324.   DOI
9 Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 2005;280:25350-25360.   DOI
10 Rodriguez AI, Gangopadhyay A, Kelley EE, Pagano PJ, Zuckerbraun BS, Bauer PM. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1. Arterioscler Thromb Vasc Biol 2010;30:98-104.   DOI
11 Morse D, Pischke SE, Zhou Z, et al. Suppression of inf lammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 2003;278:36993-36998.   DOI
12 Mazzola S, Forni M, Albertini M, et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J 2005;19:2045-2047.   DOI
13 Mitchell LA, Channell MM, Royer CM, Ryter SW, Choi AM, McDonald JD. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inf lammation. Am J Physiol Lung Cell Mol Physiol 2010;299:L891-L897.   DOI
14 Ghosh S, Wilson MR, Choudhury S, et al. Effects of inhaled carbon monoxide on acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2005;288:L1003-L1009.   DOI
15 Clayton CE, Carraway MS, Suliman HB, et al. Inhaled carbon monoxide and hyperoxic lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2001;281:L949-L957.   DOI
16 Fernandez-Gonzalez A, Alex Mitsialis S, Liu X, Kourembanas S. Vasculoprotective effects of heme oxygenase-1 in a murine model of hyperoxia-induced bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2012;302:L775-L784.   DOI
17 Hoetzel A, Schmidt R, Vallbracht S, et al. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Crit Care Med 2009;37:1708-1715.   DOI
18 Hoetzel A, Dolinay T, Vallbracht S, et al. Carbon monoxide protects against ventilator-induced lung injury via PPAR-gamma and inhibition of Egr-1. Am J Respir Crit Care Med 2008;177:1223-1232.   DOI
19 Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004;24:7130-7139.   DOI
20 Faller S, Foeckler M, Strosing KM, et al. Kinetic effects of carbon monoxide inhalation on tissue protection in ventilator-induced lung injury. Lab Invest 2012;92:999-1012.   DOI
21 Ogawa K, Sun J, Taketani S, et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 2001;20:2835-2843.   DOI
22 Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002;21:5216-5224.   DOI
23 Alam J, Igarashi K, Immenschuh S, Shibahara S, Tyrrell RM. Regulation of heme oxygenase-1 gene transcription: recent advances and highlights from the International Conference (Uppsala, 2003) on Heme Oxygenase. Antioxid Redox Signal 2004;6:924-933.   DOI
24 Alam J, Cook JL. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 2007;36:166-174.   DOI
25 Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991;28:52-61.
26 Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994;33:5636-5640.   DOI
27 Wang R. Resurgence of carbon monoxide: an endogenous gaseous vasorelaxing factor. Can J Physiol Pharmacol 1998;76:1-15.   DOI
28 Suematsu M, Goda N, Sano T, et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 1995;96:2431-2437.   DOI
29 Nakahira K, Kim HP, Geng XH, et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 2006;203:2377-2389.   DOI
30 Kim HP, Wang X, Zhang J, et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 2005;175:2622-2629.   DOI
31 Bilban M, Bach FH, Otterbein SL, et al. Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 2006;24:601-610.   DOI
32 Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002;277:17950-17961.   DOI
33 Zhang X, Shan P, Alam J, Fu XY, Lee PJ. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005;280:8714-8721.   DOI
34 Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW, Choi AM. Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 2007;282:1718-1726.   DOI
35 Reboul C, Thireau J, Meyer G, et al. Carbon monoxide exposure in the urban environment: an insidious foe for the heart? Respir Physiol Neurobiol 2012;184:204-212.   DOI
36 Kutty RK, Daniel RF, Ryan DE, Levin W, Maines MD. Rat liver cytochrome P-450b, P-420b, and P-420c are degraded to biliverdin by heme oxygenase. Arch Biochem Biophys 1988;260:638-644.   DOI
37 Tenhunen R, Ross ME, Marver HS, Schmid R. Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 1970;9:298-303.   DOI
38 Vreman HJ, Wong RJ, Stevenson DK. Carbon monoxide in breath, blood, and other tissues. In: Penney DG, ed. Carbon Monoxide Toxicity. Boca Raton: CRC Press, 2000:19-60.
39 Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem 1988;263:3348-3353.
40 Lee PJ, Jiang BH, Chin BY, et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997;272:5375-5381.   DOI
41 Lee PJ, Alam J, Sylvester SL, Inamdar N, Otterbein L, Choi AM. Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol 1996;14:556-568.   DOI
42 Alam J, Cai J, Smith A. Isolation and characterization of the mouse heme oxygenase-1 gene: distal 5' sequences are required for induction by heme or heavy metals. J Biol Chem 1994;269:1001-1009.
43 Shibahara S, Muller RM, Taguchi H. Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 1987;262:12889-12892.
44 Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J Biol Chem 1989;264:6371-6375.
45 Keyse SM, Applegate LA, Tromvoukis Y, Tyrrell RM. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol Cell Biol 1990;10:4967-4969.   DOI
46 Alam J, Camhi S, Choi AM. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem 1995;270:11977-11984.   DOI
47 Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999;274:26071-26078.   DOI
48 Alam J, Wicks C, Stewart D, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells: role of p38 kinase and Nrf2 transcription factor. J Biol Chem 2000;275:27694-27702.
49 Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 1999;13:76-86.   DOI
50 Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: novel therapeutic strategies in critical care medicine. Curr Drug Targets 2010;11:1485-1494.   DOI
51 Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011;121:459-488.   DOI
52 Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008;322:587-590.   DOI
53 Faller S, Spassov SG, Zimmermann KK, et al. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Curr Pharm Des. 2012 Oct 18 [Epub].
54 Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002;26:13-19.   DOI
55 Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007;6:917-935.   DOI
56 Lowicka E, Beltowski J. Hydrogen sulf ide (H2S): the third gas of interest for pharmacologists. Pharmacol Rep 2007;59:4-24.
57 Faller S, Ryter SW, Choi AM, Loop T, Schmidt R, Hoetzel A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 2010;113:104-115.   DOI
58 Spiller F, Orrico MI, Nascimento DC, et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am J Respir Crit Care Med 2010;182:360-368.   DOI
59 Von Burg R. Ca rbon monox ide. J Appl Tox icol 1999;19:379-386.   DOI
60 Penney D, Benignus V, Kephalopoulos S, Kotzias D, Kleinman M, Verrier A. Carbon monoxide. In: World Health Organization, ed. WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen: WHO, 2010:55.
61 Raub J. Environmental Health Criteria 213. Carbon Monoxide Second Edition. Geneva: WHO, 1999, 70.
62 Smith RP. Toxic responses of the blood. In: Casarett LJ, Doull J, Klaassen CD, Amdur MO, eds. Casarett and Doull's Toxicology: the Basic Science of Poisons. 3rd ed. New York: Macmillan, 1986:223-224.
63 Gorman D, Drewry A, Huang YL, Sames C. The clinical toxicology of carbon monoxide. Toxicology 2003;187:25-38.   DOI
64 Piantadosi CA. Diagnosis and treatment of carbon monoxide poisoning. Respir Care Clin N Am 1999;5:183-202.
65 Brouard S, Otterbein LE, Anrather J, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000;192:1015-1026.   DOI
66 Rudra CB, Williams MA, Sheppard L, et al. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression. Am J Epidemiol 2010;171:942-951.   DOI
67 Russell MA. Blood carboxyhaemoglobin changes during tobacco smoking. Postgrad Med J 1973;49:684-687.   DOI
68 Samoli E, Touloumi G, Schwartz J, et al. Short-term effects of carbon monoxide on mortality: an analysis within the APHEA project. Environ Health Perspect 2007;115:1578-1583.   DOI
69 Kim HP, Ryter SW, Choi AM. CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006;46:411-449.   DOI
70 Durante W, Johnson FK, Johnson RA. Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006;10:672-686.   DOI
71 Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun 1994;205:1333-1337.   DOI
72 Morita T, Mitsialis SA, Koike H, Liu Y, Kourembanas S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997;272:32804-32809.   DOI
73 Suliman HB, Carraway MS, Tatro LG, Piantadosi CA. A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 2007;120(Pt 2):299-308.   DOI
74 Lee SJ, Ryter SW, Xu JF, et al. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am J Respir Cell Mol Biol 2011;45:867-873.   DOI
75 Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999;276(4 Pt 1):L688-L694.
76 Zhang X, Shan P, Otterbein LE, et al. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003;278:1248-1258.   DOI
77 Otterbein LE, Otterbein SL, Ifedigbo E, et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidantinduced lung injury. Am J Pathol 2003;163:2555-2563.   DOI
78 Dolinay T, Szilasi M, Liu M, Choi AM. Inhaled carbon monoxide confers antiinf lammatory effects against ventilator-induced lung injury. Am J Respir Crit Care Med 2004;170:613-620.   DOI
79 Zhang X, Shan P, Alam J, Davis RJ, Flavell RA, Lee PJ. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogenactivated protein kinase pathway during ischemiareperfusion lung injury. J Biol Chem 2003;278:22061-22070.   DOI
80 MacGarvey NC, Suliman HB, Bartz RR, et al. Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NF-E2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 2012;185:851-861.   DOI
81 Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003;9:183-190.   DOI
82 Sato K, Balla J, Otterbein L, et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185-4194.   DOI
83 Song R, Kubo M, Morse D, et al. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inf lammatory and anti-apoptotic effects. Am J Pathol 2003;163:231-242.   DOI
84 Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-142.
85 Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 1999;19:51-71.   DOI
86 Motterlini R, Mann BE, Foresti R. Therapeutic applications of carbon monoxide-releasing molecules. Expert Opin Investig Drugs 2005;14:1305-1318.   DOI
87 Mayr FB, Spiel A, Leitner J, et al. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 2005;171:354-360.   DOI
88 Bathoorn E, Slebos DJ, Postma DS, et al. Anti-inf lammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 2007;30:1131-1137.   DOI
89 Zhai D, Guo Y, Smith G, Krewski D, Walker M, Wen SW. Maternal exposure to moderate ambient carbon monoxide is associated with decreased risk of preeclampsia. Am J Obstet Gynecol 2012;207:57.   DOI
90 Snyder SH, Bredt DS. Biological roles of nitric oxide. Sci Am 1992;266:68-77.
91 Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 2012;81:533-559.   DOI
92 Ichinose F, Roberts JD Jr, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 2004;109:3106-3111.   DOI
93 Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991;83:2038-2047.   DOI
94 Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993;328:399-405.   DOI
95 Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin Perinatol 2012;39:149-164.   DOI
96 Hartsf ield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal 2002;4:301-307.   DOI
97 Piantadosi CA. Biological chemistry of carbon monoxide. Antioxid Redox Signal 2002;4:259-270.   DOI
98 Sjostrand T. The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 1952;26:338-344.   DOI
99 Sjostrand T. Endogenous production of carbon monoxide in man under normal and pathophysiological conditions. Scand J Clin Lab Invest 1949;1:201-214.   DOI
100 Coburn RF, Blakemore WS, Forster RE. Endogenous carbon monoxide production in man. J Clin Invest 1963;42:1172-1178.   DOI
101 Tenhunen R, Marver HS, Schmid R. The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 1970;75:410-421.
102 Hasegawa U, van der Vlies AJ, Simeoni E, Wandrey C, Hubbell JA. Carbon monoxide-releasing micelles for immunotherapy. J Am Chem Soc 2010;132:18273-18280.   DOI
103 Foresti R, Bani-Hani MG, Motterlini R. Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008;34:649-658.   DOI
104 Motterlini R, Sawle P, Hammad J, et al. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. FASEB J 2005;19:284-286.   DOI
105 Kretschmer R, Gessner G, Gorls H, Heinemann SH, Westerhausen M. Dicarbonyl-bis(cysteamine)iron(II): a light induced carbon monoxide releasing molecule based on iron (CORM-S1). J Inorg Biochem 2011;105:6-9.   DOI
106 Motterlini R, Sawle P, Hammad J, et al. Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs). Pharmacol Res 2013;68:108-117.   DOI
107 Foresti R, Hammad J, Clark JE, et al. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxidereleasing molecule. Br J Pharmacol 2004;142:453-460.   DOI
108 Sawle P, Foresti R, Mann BE, Johnson TR, Green CJ, Motterlini R. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 2005;145:800-810.   DOI
109 Sun B, Zou X, Chen Y, Zhang P, Shi G. Preconditioning of carbon monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC. Int J Biol Sci 2008;4:270-278.
110 Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inf lammatory responses in the lung of thermally injured mice. J Surg Res 2007;139:128-135.   DOI
111 Cepinskas G, Katada K, Bihari A, Potter RF. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 2008;294:G184-G191.   DOI
112 Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inf lammatory effects involving the mitogenactivated protein kinase pathway. Nat Med 2000;6:422-428.   DOI
113 Kageyama H, Hiwasa T, Tokunaga K, Sakiyama S. Isolation and characterization of a complementary DNA clone for a Mr 32,000 protein which is induced with tumor promoters in BALB/c 3T3 cells. Cancer Res 1988;48:4795-4798.
114 Keyse SM, Tyrrell RM. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J Biol Chem 1987;262:14821-14825.
115 Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 1991;51:974-978.
116 Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science 1993;259:381-384.   DOI
117 Ryter SW, Morse D, Choi AM. Carbon monoxide: to boldly go where NO has gone before. Sci STKE 2004;2004:RE6.
118 Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005;57:585-630.   DOI
119 Ryter SW, Otterbein LE. Carbon monoxide in biology and medicine. Bioessays 2004;26:270-280.   DOI
120 Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 2010;9:728-743.   DOI
121 Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2013;85:689-703.   DOI
122 Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench-to-bedside review: hydrogen sulfide: the third gaseous transmitter: applications for critical care. Crit Care 2009;13:213.   DOI
123 Liu YH, Yan CD, Bian JS. Hydrogen sulf ide: a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol 2011;58:560-569.   DOI
124 Dubuis E, Potier M, Wang R, Vandier C. Continuous inhalation of carbon monoxide attenuates hypoxic pulmonary hypertension development presumably through activation of BKCa channels. Cardiovasc Res 2005;65:751-761.   DOI
125 Mizuguchi S, Stephen J, Bihari R, et al. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol 2009;297:H920-H929.   DOI
126 Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 2009;329:641-648.   DOI
127 Musameh MD, Green CJ, Mann BE, Fuller BJ, Motterlini R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J Heart Lung Transplant 2007;26:1192-1198.   DOI
128 Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary f ibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151.   DOI
129 Zhou Z, Song R, Fattman CL, et al. Carbon monoxide suppresses bleomycin-induced lung f ibrosis. Am J Pathol 2005;166:27-37.   DOI
130 Choi KM, Gibbons SJ, Nguyen TV, et al. Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis. Gastroenterology 2008;135:2055-2064.   DOI
131 Kashyap PC, Choi KM, Dutta N, et al. Carbon monoxide reverses diabetic gastroparesis in NOD mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G1013-G1019.   DOI
132 Rodella L, Lamon BD, Rezzani R, et al. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 2006;40:2198-2205.   DOI
133 Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 1968;61:748-755.   DOI
134 Wang R. Two's company, three's a crowd: can $H_2S$ be the third endogenous gaseous transmitter? FASEB J 2002;16:1792-1798.   DOI
135 Moody BF, Calvert JW. Emergent role of gasotransmitters in ischemia-reperfusion injury. Med Gas Res 2011;1:3.   DOI
136 Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998;25:434-456.   DOI
137 Tenhunen R, Marver HS, Schmid R. Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem 1969;244:6388-6394.
138 Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989;86:99-103.   DOI
139 Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517-554.   DOI
140 Maines MD, Trakshel GM, Kutty RK. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J Biol Chem 1986;261:411-419.
141 Vandiver M, Snyder SH. Hydrogen sulf ide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 2012;90:255-263.   DOI
142 Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987;84:9265-9269.   DOI
143 Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 1987;61:866-879.   DOI
144 Joe Y, Zheng M, Kim SK, et al. The role of carbon monoxide in metabolic disease. Ann N Y Acad Sci 2011;1229:156-161.   DOI
145 Simon T, Pogu S, Tardif V, et al. Carbon monoxidetreated dendritic cells decrease beta1-integrin induction on CD8(+) T cells and protect from type 1 diabetes. Eur J Immunol 2013;43:209-218.   DOI
146 Gunther L, Berberat PO, Haga M, et al. Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 2002;51:994-999.   DOI
147 Wang H, Lee SS, Gao W, et al. Donor treatment with carbon monoxide can yield islet allograft survival and tolerance. Diabetes 2005;54:1400-1406.   DOI
148 Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One 2012;7:e41836.   DOI
149 Bainbridge SA, Sidle EH, Smith GN. Direct placental effects of cigarette smoke protect women from preeclampsia: the specific roles of carbon monoxide and antioxidant systems in the placenta. Med Hypotheses 2005;64:17-27.   DOI
150 Ahmed A, Rahman M, Zhang X, et al. Induction of placental heme oxygenase-1 is protective against TNFalpha-induced cytotoxicity and promotes vessel relaxation. Mol Med 2000;6:391-409.
151 Yusuf K, Kamaluddeen M, Wilson RD, Akierman A. Carboxyhemoglobin levels in umbilical cord blood of women with pre-eclampsia and intrauterine growth restriction. J Perinat Med 2012 Jun 24 [Epub]. http://dx.doi.org/10.1515/jpm-2011-0312.
152 Bainbridge SA, Belkacemi L, Dickinson M, Graham CH, Smith GN. Carbon monoxide inhibits hypoxia/reoxygenation-induced apoptosis and secondary necrosis in syncytiotrophoblast. Am J Pathol 2006;169:774-783.   DOI
153 Fujita T, Toda K, Karimova A, et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 2001;7:598-604.   DOI
154 Bloch KD, Ichinose F, Roberts JD Jr, Zapol WM. Inhaled NO as a therapeutic agent. Cardiovasc Res 2007;75:339-348.   DOI
155 Gentile MA. Inhaled medical gases: more to breathe than oxygen. Respir Care 2011;56:1341-1357.   DOI
156 Kashiba M, Kajimura M, Goda N, Suematsu M. From $O_{2}$ to $H_{2}S$: a landscape view of gas biology. Keio J Med 2002;51:1-10.   DOI
157 Nakao A, Sugimoto R, Billiar TR, McCurry KR. Therapeutic antioxidant medical gas. J Clin Biochem Nutr 2009;44:1-13.   DOI
158 Ryter SW, Choi AM. Gaseous therapeutics in acute lung injury. Compr Physiol 2011;1:105-121.
159 Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 2009;41:251-260.   DOI
160 Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006;86:583-650.   DOI
161 Faleo G, Neto JS, Kohmoto J, et al. Carbon monoxide ameliorates renal cold ischemia-reperfusion injury with an upregulation of vascular endothelial growth factor by activation of hypoxia-inducible factor. Transplantation 2008;85:1833-1840.   DOI
162 Mishra S, Fujita T, Lama VN, et al. Carbon monoxide rescues ischemic lungs by interrupting MAPKdriven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci U S A 2006;103:5191-5196.   DOI
163 Schallner N, Fuchs M, Schwer CI, et al. Postconditioning with inhaled carbon monoxide counteracts apoptosis and neuroinflammation in the ischemic rat retina. PLoS One 2012;7:e46479.   DOI
164 Nakao A, Kimizuka K, Stolz DB, et al. Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 2003;134:285-292.   DOI
165 Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 2005;138:229-235.   DOI
166 Kohmoto J, Nakao A, Kaizu T, et al. Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery 2006;140:179-185.   DOI
167 Kohmoto J, Nakao A, Sugimoto R, et al. Carbon monoxide-saturated preservation solution protects lung grafts from ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2008;136:1067-1075.   DOI
168 Nakao A, Toyokawa H, Tsung A, et al. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006;6:2243-2255.   DOI
169 Pannen BH, Kohler N, Hole B, Bauer M, Clemens MG, Geiger KK. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats. J Clin Invest 1998;102:1220-1228.   DOI
170 Amersi F, Shen XD, Anselmo D, et al. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 2002;35:815-823.   DOI