Browse > Article
http://dx.doi.org/10.4110/in.2014.14.5.237

Contrasting Roles of Different Endoglin Forms in Atherosclerosis  

Jang, Young-Saeng (Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine)
Choi, In-Hong (Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine)
Publication Information
IMMUNE NETWORK / v.14, no.5, 2014 , pp. 237-240 More about this Journal
Abstract
Endoglin (also known as CD105 or TGF-${\beta}$ type III receptor) is a co-receptor involved in TGF-${\beta}$ signaling. In atherosclerosis, TGF-${\beta}$ signaling is crucial in regulating disease progression owing to its anti-inflammatory effects as well as its inhibitory effects on smooth muscle cell proliferation and migration. Endoglin is a regulator of TGF-${\beta}$ signaling, but its role in atherosclerosis has yet to be defined. This review focuses on the roles of the various forms of endoglin in atherosclerosis. The expression of the two isoforms of endoglin (long-form and short-form) is increased in atherosclerotic lesions, and the expression of the soluble forms of endoglin is upregulated in sera of patients with hypercholesterolemia and atherosclerosis. Interestingly, long-form endoglin shows an atheroprotective effect via the induction of eNOS expression, while short-form and soluble endoglin enhance atherogenesis by inhibiting eNOS expression and TGF-${\beta}$ signaling. This review summarizes evidence suggesting that the different forms of endoglin have distinct roles in atherosclerosis.
Keywords
Endoglin; Atherosclerosis; TGF-${\beta}$; Smad;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheifetz, S., T. Bellon, C. Cales, S. Vera, C. Bernabeu, J. Massague, and M. Letarte. 1992. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 267: 19027-19030.
2 Gougos, A., and M. Letarte. 1990. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J. Biol. Chem. 265: 8361-8364.
3 Fernandez-Ruiz, E., S. St-Jacques, T. Bellon, M. Letarte, and C. Bernabeu. 1993. Assignment of the human endoglin gene (END) to 9q34${\rightarrow}$qter. Cytogenet. Cell Genet. 64: 204-207.   DOI
4 St-Jacques, S., U. Cymerman, N. Pece, and M. Letarte. 1994. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology 134: 2645-2657.   DOI
5 Bellon, T., A. Corbi, P. Lastres, C. Cales, M. Cebrian, S. Vera, S. Cheifetz, J. Massague, M. Letarte, and C. Bernabeu. 1993. Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur. J. Immunol. 23: 2340-2345.   DOI   ScienceOn
6 Hawinkels, L. J., P. Kuiper, E. Wiercinska, H. W. Verspaget, Z. Liu, E. Pardali, C. F. Sier, and P. ten Dijke. 2010. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 70: 4141-4150.   DOI
7 Conley, B. A., J. D. Smith, M. Guerrero-Esteo, C. Bernabeu, and C. P. Vary. 2000. Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153: 323-335.   DOI
8 Sanchez-Elsner, T., L. M. Botella, B. Velasco, C. Langa, and C. Bernabeu. 2002. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J. Biol. Chem. 277: 43799-43808.   DOI
9 Lastres, P., A. Letamendia, H. Zhang, C. Rius, N. Almendro, U. Raab, L. A. Lopez, C. Langa, A. Fabra, M. Letarte, and C. Bernabeu. 1996. Endoglin modulates cellular responses to TGF-beta 1. J. Cell Biol. 133: 1109-1121.   DOI
10 Ikemoto, T., Y. Hojo, H. Kondo, N. Takahashi, M. Hirose, Y. Nishimura, T. Katsuki, K. Shimada, and K. Kario. 2012. Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels 27: 344-351.   DOI
11 Santibanez, J. F., M. Quintanilla, and C. Bernabeu. 2011. TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions. Clin. Sci. (Lond.) 121: 233-251.   DOI
12 Guerrero-Esteo, M., T. Sanchez-Elsner, A. Letamendia, and C. Bernabeu. 2002. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J. Biol. Chem. 277: 29197-29209.   DOI   ScienceOn
13 ten Dijke, P., M. J. Goumans, and E. Pardali. 2008. Endoglin in angiogenesis and vascular diseases. Angiogenesis 11: 79-89.   DOI
14 Tian, F., A. X. Zhou, A. M. Smits, E. Larsson, M. J. Goumans, C. H. Heldin, J. Boren, and L. M. Akyurek. 2010. Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro. Biochem. Biophys. Res. Commun. 392: 283-288.   DOI
15 Blanco, F. J., J. F. Santibanez, M. Guerrero-Esteo, C. Langa, C. P. Vary, and C. Bernabeu. 2005. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J. Cell Physiol. 204: 574-584.   DOI
16 Llorca, O., A. Trujillo, F. J. Blanco, and C. Bernabeu. 2007. Structural model of human endoglin, a transmembrane receptor responsible for hereditary hemorrhagic telangiectasia. J. Mol. Biol. 365: 694-705.   DOI   ScienceOn
17 Blanco, F. J., M. T. Grande, C. Langa, B. Oujo, S. Velasco, A. Rodriguez-Barbero, E. Perez-Gomez, M. Quintanilla, J. M. Lopez-Novoa, and C. Bernabeu. 2008. S-endoglin expression is induced in senescent endothelial cells and contributes to vascular pathology. Circ. Res. 103: 1383-1392.   DOI
18 Gamble, J. R., Y. Khew-Goodall, and M. A. Vadas. 1993. Transforming growth factor-beta inhibits E-selectin expression on human endothelial cells. J. Immunol. 150: 4494-4503.
19 Post, S., W. Peeters, E. Busser, D. Lamers, J. P. Sluijter, M. J. Goumans, R. A. de Weger, F. L. Moll, P. A. Doevendans, G. Pasterkamp, and A. Vink. 2008. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J. Vasc. Res. 45: 244-250.   DOI
20 Blazquez-Medela, A. M., L. Garcia-Ortiz, M. A. Gomez-Marcos, J. I. Recio-Rodriguez, A. Sanchez-Rodriguez, J. M. Lopez-Novoa, and C. Martinez-Salgado. 2010. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 8: 86.   DOI
21 Li, C. G., H. Bethell, P. B. Wilson, D. Bhatnagar, M. G. Walker, and S. Kumar. 2000. The significance of CD105, TGFbeta and CD105/TGFbeta complexes in coronary artery disease. Atherosclerosis 152: 249-256.   DOI
22 Massague, J., and D. Wotton. 2000. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19: 1745-1754.   DOI   ScienceOn
23 Singh, N. N., and D. P. Ramji. 2006. The role of transforming growth factor-beta in atherosclerosis. Cytokine Growth Factor Rev. 17: 487-499.   DOI
24 Mallat, Z., A. Gojova, C. Marchiol-Fournigault, B. Esposito, C. Kamate, R. Merval, D. Fradelizi, and A. Tedgui. 2001. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89: 930-934.   DOI   ScienceOn
25 Feinberg, M. W., and M. K. Jain. 2005. Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med. 47: 169-186.
26 Lebrin, F., M. Deckers, P. Bertolino, and P. Ten Dijke. 2005. TGF-beta receptor function in the endothelium. Cardiovasc. Res. 65: 599-608.   DOI   ScienceOn
27 Koleva, R. I., B. A. Conley, D. Romero, K. S. Riley, J. A. Marto, A. Lux, and C. P. Vary. 2006. Endoglin structure and function: Determinants of endoglin phosphorylation by transforming growth factor-beta receptors. J. Biol. Chem. 281: 25110-25123.   DOI
28 Venkatesha, S., M. Toporsian, C. Lam, J. Hanai, T. Mammoto, Y. M. Kim, Y. Bdolah, K. H. Lim, H. T. Yuan, T. A. Libermann, I. E. Stillman, D. Roberts, P. A. D'Amore, F. H. Epstein, F. W. Sellke, R. Romero, V. P. Sukhatme, M. Letarte, and S. A. Karumanchi. 2006. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12: 642-649.   DOI   ScienceOn
29 Li, C., P. Mollahan, M. S. Baguneid, R. F. McMahon, P. Kumar, M. G. Walker, A. J. Freemont, and S. Kumar. 2006. A comparative study of neovascularisation in atherosclerotic plaques using CD31, CD105 and TGF beta 1. Pathobiology 73: 192-197.   DOI
30 Blann, A. D., J. M. Wang, P. B. Wilson, and S. Kumar. 1996. Serum levels of the TGF-beta receptor are increased in atherosclerosis. Atherosclerosis 120: 221-226.   DOI
31 Li, C., B. Guo, S. Ding, C. Rius, C. Langa, P. Kumar, C. Bernabeu, and S. Kumar. 2003. TNF alpha down-regulates CD105 expression in vascular endothelial cells: a comparative study with TGF beta 1. Anticancer Res. 23: 1189-1196.