Browse > Article
http://dx.doi.org/10.4110/in.2014.14.1.45

Ursodeoxycholic Acid Ameliorates Pain Severity and Cartilage Degeneration in Monosodium Iodoacetate-Induced Osteoarthritis in Rats  

Moon, Su-Jin (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
Jeong, Jeong-Hee (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea)
Jhun, Joo Yeon (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea)
Yang, Eun Ji (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea)
Min, Jun-Ki (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
Choi, Jong Young (Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea)
Cho, Mi-La (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea)
Publication Information
IMMUNE NETWORK / v.14, no.1, 2014 , pp. 45-53 More about this Journal
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage. And, increased oxidative stress plays a relevant role in the pathogenesis of OA. Ursodeoxycholic acid (UDCA) is a used drug for liver diseases known for its free radical-scavenging property. The objectives of this study were to investigate the in vivo effects of UDCA on pain severity and cartilage degeneration using an experimental OA model and to explore its mode of actions. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration UDCA was initiated on the day of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, nitrotyrosine and inducible nitric oxide synthase (iNOS) in knee joints. UDCA showed an antinociceptive property and attenuated cartilage degeneration. OA rats given oral UDCA significantly exhibited a decreased number of osteoclasts in subchondral bone legion compared with the vehicle-treated OA group. UDCA reduced the expression of IL-$1{\beta}$, IL-6, nitrotyrosine and iNOS in articular cartilage. UDCA treatment significantly attenuated the mRNA expression of matrix metalloproteinase-3 (MMP-3), -13, and ADAMTS5 in IL-$1{\beta}$-stimulated human OA chondrocytes. These results show the inhibitory effects of UDCA on pain production and cartilage degeneration in experimentally induced OA. The chondroprotective properties of UDCA were achieved by suppressing oxidative damage and inhibiting catabolic factors that are implicated in the pathogenesis of cartilage damage in OA.
Keywords
Ursodeoxycholic acid (UDCA); Monosodium iodoacetate (MIA); Osteoarthritis; Oxidative stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Poupon, R. E., B. Balkau, E. Eschwege, and R. Poupon. 1991. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N. Engl. J. Med. 324: 1548-1554.   DOI   ScienceOn
2 Corpechot, C., F. Carrat, A. Bahr, Y. Chretien, R. E. Poupon, and R. Poupon. 2005. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 128: 297-303.   DOI   ScienceOn
3 Okada, K., J. Shoda, K. Taguchi, J. M. Maher, K. Ishizaki, Y. Inoue, M. Ohtsuki, N. Goto, K. Takeda, H. Utsunomiya, K. Oda, E. Warabi, T. Ishii, K. Osaka, I. Hyodo, and M. Yamamoto. 2008. Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G735-747.   DOI   ScienceOn
4 Kim, J., Y. N. Cha, and Y. J. Surh. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690: 12-23.   DOI   ScienceOn
5 Sanghi, D., S. Avasthi, A. Mishra, A. Singh, S. Agarwal, and R. N. Srivastava. 2011. Is radiology a determinant of pain, stiffness, and functional disability in knee osteoarthritis? A cross-sectional study. J. Orthop. Sci. 16: 719-725.   DOI
6 Cotofana, S., B. T. Wyman, O. Benichou, D. Dreher, M. Nevitt, J. Gardiner, W. Wirth, W. Hitzl, C. K. Kwoh, F. Eckstein, and R. B. Frobell. 2013. Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI. Osteoarthritis Cartilage 21: 1214-1222.   DOI   ScienceOn
7 Dean, D. D., W. Azzo, J. Martel-Pelletier, J. P. Pelletier, and J. F. Woessner, Jr. 1987. Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J. Rheumatol. 14 Spec No: 43-44.
8 Tanaka, S., C. Hamanishi, H. Kikuchi, and K. Fukuda. 1998. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin. Arthritis Rheum. 27: 392-399.   DOI   ScienceOn
9 Durigova, M., H. Nagase, J. S. Mort, and P. J. Roughley. 2011. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol. 30: 145-153.   DOI   ScienceOn
10 Song, R. H., M. D. Tortorella, A. M. Malfait, J. T. Alston, Z. Yang, E. C. Arner, and D. W. Griggs. 2007. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 56: 575-585   DOI   ScienceOn
11 Carlo, M. D. Jr. and R. F. Loeser. 2003. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 48: 3419-3430.   DOI   ScienceOn
12 Sharma, A. R., S. Jagga, S. S. Lee, and J. S. Nam. 2013. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis. Int. J. Mol. Sci. 14: 19805-19830.   DOI   ScienceOn
13 Ljubuncic, P., B. Fuhrman, J. Oiknine, M. Aviram, and A. Bomzon. 1996. Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages. Gut 39: 475-478.   DOI   ScienceOn
14 Lukivskaya, O., L. Zavodnik, M. Knas, and V. Buko. 2006. Antioxidant mechanism of hepatoprotection by ursodeoxycholic acid in experimental alcoholic steatohepatitis. Adv. Med. Sci. 51: 54-59.
15 Kuettner, K. E., B. U. Pauli, G. Gall, V. A. Memoli, and R. K. Schenk. 1982. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J. Cell Biol. 93: 743-750.   DOI
16 Guzman, R. E., M. G. Evans, S. Bove, B. Morenko, and K. Kilgore. 2003. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol. Pathol. 31: 619-624.   DOI
17 Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J. P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7: 33-42.   DOI   ScienceOn
18 Kobayashi, K., R. Imaizumi, H. Sumichika, H. Tanaka, M. Goda, A. Fukunari, and H. Komatsu. 2003. Sodium iodoacetate- induced experimental osteoarthritis and associated pain model in rats. J. Vet. Med. Sci. 65: 1195-1199.   DOI   ScienceOn
19 Chevalier, X., B. Giraudeau, T. Conrozier, J. Marliere, P. Kiefer, and P. Goupille. 2005. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32: 1317-1323.
20 Scott, J. L., C. Gabrielides, R. K. Davidson, T. E. Swingler, I. M. Clark, G. A. Wallis, R. P. Boot-Handford, T. B. Kirkwood, R. W. Taylor, and D. A. Young. 2010. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69: 1502-1510.   DOI   ScienceOn
21 Pelletier, J. P., D. V. Jovanovic, V. Lascau-Coman, J. C. Fernandes, P. T. Manning, J. R. Connor, M. G. Currie, and J. Martel-Pelletier. 2000. Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo : possible link with the reduction in chondrocyte apoptosis and caspase 3 level. Arthritis Rheum. 43: 1290-1299.   DOI   ScienceOn
22 Tiku, M. L., R. Shah, and G. T. Allison. 2000. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J. Biol. Chem. 275: 20069-20076.   DOI   ScienceOn
23 Mendes, A. F., M. M. Caramona, A. P. Carvalho, and M. C. Lopes. 2003. Hydrogen peroxide mediates interleukin-1betainduced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression. Cell Biol. Toxicol. 19: 203-214.   DOI   ScienceOn
24 Tiku, M. L., G. T. Allison, K. Naik, and S. K. Karry. 2003. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthritis Cartilage 11: 159-166.   DOI   ScienceOn
25 Poupon, R. E., K. D. Lindor, K. Cauch-Dudek, E. R. Dickson, R. Poupon, and E. J. Heathcote. 1997. Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterology 113: 884-890.   DOI   ScienceOn
26 Poupon, R. 2012. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin. Res. Hepatol. Gastroenterol. 36 Suppl 1: S3-12.   DOI   ScienceOn
27 Lapenna, D., G. Ciofani, D. Festi, M. Neri, S. D. Pierdomenico, M. A. Giamberardino, and F. Cuccurullo. 2002. Antioxidant properties of ursodeoxycholic acid. Biochem. Pharmacol. 64: 1661-1667.   DOI   ScienceOn
28 Felson, D. T. 2006. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med. 354: 841-848.   DOI   ScienceOn
29 Guerne, P. A., D. A. Carson, and M. Lotz. 1990. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol. 144: 499-505.
30 Chadjichristos, C., C. Ghayor, M. Kypriotou, G. Martin, E. Renard, L. Ala-Kokko, G. Suske, B. de Crombrugghe, J. P. Pujol, and P. Galera. 2003. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J. Biol. Chem. 278: 39762-39772.   DOI   ScienceOn
31 Remans, P. H., C. A. Wijbrandts, M. E. Sanders, R. E. Toes, F. C. Breedveld, P. P. Tak, J. M. van Laar, and K. A. Reedquist. 2006. CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum. 54: 3135- 3143.   DOI   ScienceOn
32 Najim, R. A., K. E. Sharquie, and A. R. Abu-Raghif. 2007. Oxidative stress in patients with Behcet's disease: I correlation with severity and clinical parameters. J. Dermatol. 34: 308-314   DOI   ScienceOn
33 Huebner, J. L., I. G. Otterness, E. M. Freund, B. Caterson, and V. B. Kraus. 1998. Collagenase 1 and collagenase 3 expression in a guinea pig model of osteoarthritis. Arthritis Rheum. 41: 877-890.   DOI