Browse > Article
http://dx.doi.org/10.4110/in.2014.14.1.1

Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice  

Fujiwara, Shigeyoshi (Department of Infectious Diseases, National Research Institute for Child Health and Development)
Publication Information
IMMUNE NETWORK / v.14, no.1, 2014 , pp. 1-6 More about this Journal
Abstract
Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice.
Keywords
Epstein-Barr virus; Humanized mouse; Lymphoproliferative disease; Rheumatoid arthritis; Immune response; Persistent infection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sato, K., N. Misawa, C. Nie, Y. Satou, D. Iwakiri, M. Matsuoka, R. Takahashi, K. Kuzushima, M. Ito, K. Takada, and Y. Koyanagi. 2011. A novel animal model of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in humanized mice. Blood 117: 5663-5673.   DOI   ScienceOn
2 Shultz, L. D., Y. Saito, Y. Najima, S. Tanaka, T. Ochi, M. Tomizawa, T. Doi, A. Sone, N. Suzuki, H. Fujiwara, M. Yasukawa, and F. Ishikawa. 2010. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc. Natl. Acad. Sci. USA 107: 13022- 13027.   DOI   ScienceOn
3 Kikuta, H., Y. Sakiyama, S. Matsumoto, T. Oh-Ishi, T. Nakano, T. Nagashima, T. Oka, T. Hironaka, and K. Hirai. 1993. Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood 82: 3259-3264.
4 Kawaguchi, H., T. Miyashita, H. Herbst, G. Niedobitek, M. Asada, M. Tsuchida, R. Hanada, A. Kinoshita, M. Sakurai, N. Kobayashi, and S. Mizutani. 1993. Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J. Clin. Invest. 92: 1444-1450.   DOI   ScienceOn
5 Kawa-Ha, K., S. Ishihara, T. Ninomiya, K. Yumura-Yagi, J. Hara, F. Murayama, A. Tawa, and K. Hirai. 1989. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J. Clin. Invest. 84: 51-55.   DOI   ScienceOn
6 Jones, J. F., S. Shurin, C. Abramowsky, R. R. Tubbs, C. G. Sciotto, R. Wahl, J. Sands, D. Gottman, B. Z. Katz, and J. Sklar. 1988. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N. Engl. J. Med. 318: 733-741.
7 Kikuta, H., Y. Taguchi, K. Tomizawa, K. Kojima, N. Kawamura, A. Ishizaka, Y. Sakiyama, S. Matsumoto, S. Imai, T. Kinoshita, S. Koizumi, T. Osato, I. Kobayashi, I. Hamada, and K. Hirai. 1988. Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 455-457.   DOI   ScienceOn
8 Ishihara, S., A. Tawa, K. Yumura-Yagi, M. Murata, J. Hara, H. Yabuuchi, K. Hirai, and K. Kawa-Ha. 1989. Clonal T-cell lymphoproliferation containing Epstein-Barr (EB) virus DNA in a patient with chronic active EB virus infection. Jpn. J. Cancer Res. 80: 99-101.   DOI
9 Imadome, K., M. Yajima, A. Arai, A. Nakazawa, F. Kawano, S. Ichikawa, N. Shimizu, N. Yamamoto, T. Morio, S. Ohga, H. Nakamura, M. Ito, O. Miura, J. Komano, and S. Fujiwara. 2011. Novel mouse xenograft models reveal a critical role of $CD4^{+}$ T cells in the proliferation of EBV-infected T and NK cells. PLoS Pathog. 7: e1002326.   DOI
10 Cocco, M., C. Bellan, R. Tussiwand, D. Corti, E. Traggiai, S. Lazzi, S. Mannucci, L. Bronz, N. Palummo, C. Ginanneschi,P. Tosi, A. Lanzavecchia, M. G. Manz, and L. Leoncini. 2008. $CD34^{+}$ cord blood cell-transplanted $Rag2^{-/-}$ $gamma(c)^{-/-}$ mice as a model for Epstein-Barr virus infection. Am. J. Pathol. 173: 1369-1378.
11 McInnes, I. B. and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365: 2205-2219.
12 Niller, H. H., H. Wolf, E. Ay, and J. Minarovits. 2011. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. Adv. Exp. Med. Biol. 711: 82-102.   DOI
13 Yajima, M., K. Imadome, A. Nakagawa, S. Watanabe, K. Terashima, H. Nakamura, M. Ito, N. Shimizu, N. Yamamoto, and S. Fujiwara. 2009. T cell-mediated control of Epstein-Barr virus infection in humanized mice. J. Infect. Dis. 200: 1611- 1615.   DOI   ScienceOn
14 Takei, M., K. Mitamura, S. Fujiwara, T. Horie, J. Ryu, S. Osaka, S. Yoshino, and S. Sawada. 1997. Detection of Epstein-Barr virus-encoded small RNA 1 and latent membrane protein 1 in synovial lining cells from rheumatoid arthritis patients. Int. Immunol. 9: 739-743.   DOI   ScienceOn
15 Kuwana, Y., M. Takei, M. Yajima, K. Imadome, H. Inomata, M. Shiozaki, N. Ikumi, T. Nozaki, H. Shiraiwa, N. Kitamura, J. Takeuchi, S. Sawada, N. Yamamoto, N. Shimizu, M. Ito, and S. Fujiwara. 2011. Epstein-Barr virus induces erosive arthritis in humanized mice. PLoS One 6: e26630.   DOI
16 Watanabe, Y., T. Takahashi, A. Okajima, M. Shiokawa, N. Ishii, I. Katano, R. Ito, M. Ito, M. Minegishi, N. Minegishi, S. Tsuchiya, and K. Sugamura. 2009. The analysis of the functions of human B and T cells in humanized NOD/shiscid/ gammac(null) (NOG) mice (hu-HSC NOG mice). Int. Immunol. 21: 843-858.   DOI   ScienceOn
17 Yajima, M., K. Imadome, A. Nakagawa, S. Watanabe, K. Terashima, H. Nakamura, M. Ito, N. Shimizu, M. Honda, N. Yamamoto, and S. Fujiwara. 2008. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J. Infect. Dis. 198: 673-682.   DOI   ScienceOn
18 Strowig, T., C. Gurer, A. Ploss, Y. F. Liu, F. Arrey, J. Sashihara, G. Koo, C. M. Rice, J. W. Young, A. Chadburn, J. I. Cohen, and C. Munz. 2009. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J. Exp. Med. 206: 1423-1434.   DOI   ScienceOn
19 Ma, S. D., S. Hegde, K. H. Young, R. Sullivan, D. Rajesh, Y. Zhou, E. Jankowska-Gan, W. J. Burlingham, X. Sun, M. L. Gulley, W. Tang, J. E. Gumperz, and S. C. Kenney. 2011. A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 85: 165-177.   DOI   ScienceOn
20 Ma, S. D., X. Yu, J. E. Mertz, J. E. Gumperz, E. Reinheim, Y. Zhou, W. Tang, W. J. Burlingham, M. L. Gulley, and S. C. Kenney. 2012. An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J. Virol. 86: 7976-7987.   DOI
21 White, R. E., P. C. Ramer, K. N. Naresh, S. Meixlsperger, L. Pinaud, C. Rooney, B. Savoldo, R. Coutinho, C. Bodor, J. Gribben, H. A. Ibrahim, M. Bower, J. P. Nourse, M. K. Gandhi, J. Middeldorp, F. Z. Cader, P. Murray, C. Munz, and M. J. Allday. 2012. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J. Clin. Invest. 122: 1487-1502.   DOI   ScienceOn
22 Wahl, A., S. D. Linnstaedt, C. Esoda, J. F. Krisko, F. Martinez-Torres, H. J. Delecluse, B. R. Cullen, and J. V. Garcia. 2013. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J. Virol. 87: 5437-5446.   DOI   ScienceOn
23 Traggiai, E., L. Chicha, L. Mazzucchelli, L. Bronz, J. C. Piffaretti, A. Lanzavecchia, and M. G. Manz. 2004. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104-107.   DOI
24 Shultz, L. D., B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger. 2005. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174: 6477-6489.   DOI
25 Melkus, M. W., J. D. Estes, A. Padgett-Thomas, J. Gatlin, P. W. Denton, F. A. Othieno, A. K. Wege, A. T. Haase, and J. V. Garcia. 2006. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12: 1316-1322.   DOI   ScienceOn
26 Fujiwara, S., G. Matsuda, and K. Imadome. 2013. Humanized mouse models of Epstein-Barr virus infection and associated diseases. Pathogens 2: 153-176.   DOI
27 Akkina, R. 2013. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435: 14-28.   DOI   ScienceOn
28 Watanabe, S., S. Ohta, M. Yajima, K. Terashima, M. Ito, H. Mugishima, S. Fujiwara, K. Shimizu, M. Honda, N. Shimizu, and N. Yamamoto. 2007. Humanized NOD/SCID/IL2Rgamma (null) mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J. Virol. 81: 13259-13264.   DOI   ScienceOn
29 Hiramatsu, H., R. Nishikomori, T. Heike, M. Ito, K. Kobayashi, K. Katamura, and T. Nakahata. 2003. Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 102: 873-880.   DOI   ScienceOn
30 Watanabe, S., K. Terashima, S. Ohta, S. Horibata, M. Yajima, Y. Shiozawa, M. Z. Dewan, Z. Yu, M. Ito, T. Morio, N. Shimizu, M. Honda, and N. Yamamoto. 2007. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 109: 212-218.   DOI   ScienceOn
31 Longnecker, R. M., E. Kieff, and J. I. Cohen. 2013. Epstein- Barr virus. In Fields Virology, 6th. ed. D. M. Knipe and P. M. Howley, eds. Lippincott Williams and Wlikins, Philadelphia, PA. p.1898-1959.
32 Hislop, A. D., G. S. Taylor, D. Sauce, and A. B. Rickinson. 2007. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25: 587-617.   DOI   ScienceOn
33 Shope, T., D. Dechairo, and G. Miller. 1973. Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 70: 2487-2491.   DOI
34 Epstein, M. A., H. zur Hausen, G. Ball, and H. Rabin. 1975. Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). III. Serological and biochemical findings in an animal with reticuloproliferative disease. Int. J. Cancer 15: 17-22.   DOI
35 Johannessen, I. and D. H. Crawford. 1999. In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev. Med. Virol. 9: 263-277.   DOI
36 Toussirot, E. and J. Roudier. 2007. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Joint Bone Spine 74: 418-426.   DOI   ScienceOn
37 Takashima, K., M. Ohashi, Y. Kitamura, K. Ando, K. Nagashima, H. Sugihara, K. Okuno, T. Sairenji, and K. Hayashi. 2008. A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. J. Med. Virol. 80: 455-466.   DOI   ScienceOn
38 Ito, M., H. Hiramatsu, K. Kobayashi, K. Suzue, M. Kawahata, K. Hioki, Y. Ueyama, Y. Koyanagi, K. Sugamura, K. Tsuji, T. Heike, and T. Nakahata. 2002. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175-3182.   DOI   ScienceOn