Browse > Article
http://dx.doi.org/10.4110/in.2013.13.6.264

Detection of Foreign Antigen-specific $CD4^+Foxp3^+$ Regulatory T Cells by MHC Class II Tetramer and Intracellular CD154 Staining  

Choi, Jin Young (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Eo, Seong Kug (College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Publication Information
IMMUNE NETWORK / v.13, no.6, 2013 , pp. 264-274 More about this Journal
Abstract
The unrestricted population of $CD4^+Foxp3^+$ regulatory T (Treg) cells, which have been known to control the expression of autoimmune diseases and protective immunity to inflammatory reactions, has led to greater appreciation of functional plasticity. Detecting and/or isolating Ag-specific $CD4^+Foxp3^+$ Tregs at the single cell level are required to study their function and plasticity. In this study, we established and compared both MHC class II tetramer and intracellular CD154 staining, in order to detect $CD4^+Foxp3^+$ Treg specific for foreign Ag in acute and chronic infections with lymphocytic choriomeningitis virus (LCMV). Our results revealed that MHC class II tetramer staining showed a lower detection rate of LCMV $GP_{66-77}$-specific $CD4^+$ T cells because most of MHC class II tetramers were unbound and unstable when combined staining was performed with intracellular cytokines. In contrast, intracellular CD154 staining was revealed to be easier and simple for detecting LCMV $GP_{66-77}$-specific $CD4^+$ T cells, compared to MHC class II tetramer staining. Subsequently, we employed intracellular CD154 staining to detect LCMV $GP_{66-77}$-specific $CD4^+Foxp3^+$ Tregs using $Foxp3^{GFP}$ knock-in mouse, and found that LCMV $GP_{66-77}$-specific $CD4^+Foxp3^+$ Tregs and polyclonal $CD4^+Foxp3^+$ Tregs showed differential expansion in mice infected with LCMV Arms or Cl13 at acute (8 and 13 days pi) and chronic phases (35 days pi). Therefore, our results provide insight into the valuable use of intracellular CD154 staining to detect and characterize foreign Ag-specific $CD4^+Foxp3^+$ Treg in various models.
Keywords
$CD4^+Foxp3^+$ regulatory T cells; MHC class II tetramer; Intracellular CD154 staining; Exhausted T cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pacholczyk, R., J. Kern, N. Singh, M. Iwashima, P. Kraj, and L. Ignatowicz. 2007. Nonself-antigens are the cognate specificities of $Foxp3^+$ regulatory T cells. Immunity 27: 493-504.   DOI   ScienceOn
2 Kasow, K. A., X. Chen, J. Knowles, D. Wichlan, R. Handgretinger, and J. M. Riberdy. 2004. Human $CD4^+CD25^+$ regulatory T cells share equally complex and comparable repertoires with $CD4^+CD25^-$ counterparts. J. Immunol. 172: 6123-6128.   DOI
3 Krueger, L. A., C. T. Nugent, and J. Hampl. 2004. Identification of human antigen-specific T cells using MHC class I and class II tetramers. Curr. Protoc. Cytom. Chapter 6: Unit 6.18.
4 Cecconi, V., M. Moro, S. Del Mare, P. Dellabona, and G. Casorati. 2008. Use of MHC class II tetramers to investigate $CD4^+$ T cell responses: problems and solutions. Cytometry A 73: 1010-1018.
5 Guillaume, P., D. Dojcinovic, and I. F. Luescher. 2009. Soluble MHC-peptide complexes: tools for the monitoring of T cell responses in clinical trials and basic research. Cancer Immun. 9: 7-12.
6 Frentsch, M., O. Arbach, D. Kirchhoff, B. Moewes, M. Worm, M. Rothe, A. Scheffold, and A. Thiel. 2005. Direct access to $CD4^+$ T cells specific for defined antigens according to CD154 expression. Nat. Med. 11: 1118-1124.   DOI   ScienceOn
7 Chattopadhyay, P. K., J. Yu, and M. Roederer. 2006. Live-cell assay to detect antigen-specific $CD4^+$ T-cell responses by CD154 expression. Nat. Protoc. 1: 1-6.   DOI   ScienceOn
8 Holst, P. J., J. P. Christensen, and A. R. Thomsen. 2011. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice. J. Immunol. 186: 3997-4007.   DOI
9 McDermott, D. S. and S. M. Varga. 2011. Quantifying antigen- specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. J. Immunol. 187: 5568-5576.   DOI
10 Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687.   DOI   ScienceOn
11 Shin, H. and E. J. Wherry. 2007. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19: 408-415.   DOI   ScienceOn
12 Zinselmeyer, B. H., S. Heydari, C. Sacristan, D. Nayak, M. Cammer, J. Herz, X. Cheng, S. J. Davis, M. L. Dustin, and D. B. McGavern. 2013. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210: 757-774.   DOI   ScienceOn
13 Roy, M., T. Waldschmidt, A. Aruffo, J. A. Ledbetter, and R. J. Noelle. 1993. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned $CD4^+$ T cells. J. Immunol. 151: 2497-2510.
14 Cao, Y., W. Xu, and S. Xiong. 2013. Adoptive Transfer of Regulatory T Cells Protects against Coxsackievirus B3-Induced Cardiac Fibrosis. PLoS One 8: e74955.   DOI
15 Vasconcelos, J. F., B. S. Souza, T. F. Lins, L. M. Garcia, C. M. Kaneto, G. P. Sampaio, A. C. de Alcantara, C. S. Meira, S. G. Macambira, R. Ribeiro-Dos-Santos, and M. B. Soares. 2013. Administration of granulocyte colony-stimulating factor induces immunomodulation, recruitment of T regulatory cells, reduction of myocarditis and decrease of parasite load in a mouse model of chronic Chagas disease cardiomyopathy. FASEB J. in press: doi:10.1096/fj.13-229351.
16 Kleinschnitz, C., P. Kraft, A. Dreykluft, I. Hagedorn, K. Gobel, M. K. Schuhmann, F. Langhauser, X. Helluy, T. Schwarz, S. Bittner, C. T. Mayer, M. Brede, C. Varallyay, M. Pham, M. Bendszus, P. Jakob, T. Magnus, S. G. Meuth, Y. Iwakura, A. Zernecke, T. Sparwasser, B. Nieswandt, G. Stoll, and H. Wiendl. 2013. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121: 679-691.   DOI
17 Yadav, M., S. Stephan, and J. A. Bluestone. 2013. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol. 4: 232.
18 Pacholczyk, R. and J. Kern. 2008. The T-cell receptor repertoire of regulatory T cells. Immunology 125: 450-458.   DOI   ScienceOn
19 Sakaguchi, S., M. Ono, R. Setoguchi, H. Yagi, S. Hori, Z. Fehervari, J. Shimizu, T.akahashi, and T. Nomura. 2006. $Foxp3^+$ $CD25^+$ $CD4^+$ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212: 8-27.   DOI   ScienceOn
20 Komatsu, N., M. E. Mariotti-Ferrandiz, Y. Wang, B. Malissen, H. Waldmann, and S. Hori. 2009. Heterogeneity of natural $Foxp3^+$ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. U.S.A. 106: 1903-1908.
21 Song, K. D., S. Hwang, and C. H. Yun. 2011. T cell receptor signaling that regulates the development of intrathymic natural regulatory T cells. Immune Netw. 11: 336-341.   DOI   ScienceOn
22 Curotto de Lafaille, M. A. and J. J. Lafaille. 2009. Natural and adaptive $Foxp3^+$ regulatory T cells: more of the same or a division of labor? Immunity 30: 626-635.   DOI   ScienceOn
23 Altman, J. D., P. A. Moss, P. J. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94-96.   DOI   ScienceOn
24 Hoffmann, P., T. J. Boeld, R. Eder, J. Huehn, S. Floess, G. Wieczorek, S. Olek, W. Dietmaier, R. Andreesen, and M. Edinger. 2009. Loss of FOXP3 expression in natural human $CD4^+CD25^+$ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39: 1088-1097.   DOI   ScienceOn
25 Yellin, M. J., K. Sippel, G. Inghirami, L. R. Covey, J. J. Lee, J. Sinning, E. A. Clark, L. Chess, and S. Lederman. 1994. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152: 598-608.
26 Graf, D., S. Muller, U. Korthauer, C. van Kooten, C. Weise, and R. A. Kroczek. 1995. A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur. J. Immunol. 25: 1749-1754.   DOI   ScienceOn
27 Miyara, M., Y. Yoshioka, A. Kitoh, T. Shima, K. Wing, A. Niwa, C. Parizot, C. Taflin, T. Heike, D. Valeyre, A. Mathian, T. Nakahata, T. Yamaguchi, T. Nomura, M. Ono, Z. Amoura, G. Gorochov, and S. Sakaguchi. 2009. Functional delineation and differentiation dynamics of human $CD4^+$ T cells expressing the FoxP3 transcription factor. Immunity 30: 899-911.   DOI   ScienceOn
28 Vukmanovic-Stejic, M., E. Agius, N. Booth, P. J. Dunne, K. E. Lacy, J. R. Reed, T. O. Sobande, S. Kissane, M. Salmon, M. H. Rustin, and A. N. Akbar. 2008. The kinetics of $CD4^+Foxp3^+$ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. J. Clin. Invest. 118: 3639-3650.   DOI   ScienceOn
29 Litjens, N. H., K. Boer, and M. G. Betjes. 2012. Identification of circulating human antigen-reactive CD4+ FOXP3+ natural regulatory T cells. J. Immunol. 188: 1083-1090.   DOI   ScienceOn
30 Valencia, X. and P. E. Lipsky. 2007. $CD4^+CD25^+FoxP3^+$ regulatory T cells in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 3: 619-626.
31 Huan, J., N. Culbertson, L. Spencer, R. Bartholomew, G. G. Burrows, Y. K. Chou, D. Bourdette, S. F. Ziegler, H. Offner, and A. A. Vandenbark. 2005. Decreased Foxp3 levels in multiple sclerosis patients. J. Neurosci. Res. 81: 45-52.   DOI   ScienceOn
32 Xu, W., Q. Lan, M. Chen, H. Chen, N. Zhu, X. Zhou, J. Wang, H. Fan, C. S. Yan, J. L. Kuang, D. Warburton, D. Togbe, B. Ryffel, S. G. Zheng, and W. Shi. 2012. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation. PLoS One. 7: e40314.   DOI
33 Adeegbe, D., R. B. Levy, and T. R. Malek. 2010. Allogeneic T regulatory cell-mediated transplantation tolerance in adoptive therapy depends on dominant peripheral suppression and central tolerance. Blood 115: 1932-1940.   DOI   ScienceOn
34 Li, P., Y. Gan, B. L. Sun, F. Zhang, B. Lu, Y. Gao, W. Liang, A. W., Thomson, J. Chen, and X. Hu. 2012. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann. Neurol. in press: doi:10.1002/ana.23815.
35 Chattopadhyay, P. K., J. Yu, and M. Roederer. 2005. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 11: 1113-1117.   DOI   ScienceOn
36 Hartigan-O'Connor, D. J., C. Poon, E. Sinclair, and J. M. McCune. 2007. Human $CD4^+$ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods 319: 41-52.   DOI   ScienceOn