Browse > Article
http://dx.doi.org/10.4110/in.2013.13.5.177

Nanoparticle-Based Vaccine Delivery for Cancer Immunotherapy  

Park, Yeong-Min (Department of Immunology, School of Medicine, Konkuk University)
Lee, Seung Jun (Department of Immunology, School of Medicine, Konkuk University)
Kim, Young Seob (Department of Immunology, School of Medicine, Konkuk University)
Lee, Moon Hee (Department of Immunology, School of Medicine, Konkuk University)
Cha, Gil Sun (Department of Immunology, School of Medicine, Konkuk University)
Jung, In Duk (Department of Immunology, School of Medicine, Konkuk University)
Kang, Tae Heung (Department of Immunology, School of Medicine, Konkuk University)
Han, Hee Dong (Department of Immunology, School of Medicine, Konkuk University)
Publication Information
IMMUNE NETWORK / v.13, no.5, 2013 , pp. 177-183 More about this Journal
Abstract
Development of nano-sized carriers including nanoparticles, nanoemulsions or liposomes holds great potential for advanced delivery systems for cancer immunotherapy, as such nanostructures can be used to more effectively manipulate or deliver immunologically active components to specific target sites. Successful development of nanotechnology based platform in the field of immunotherapy will allow the application of vaccines, adjuvants and immunomodulatory drugs that improve clinical outcomes for immunological diseases. Here, we review current nanoparticle-based platforms in the efficacious delivery of vaccines in cancer immunotherapy.
Keywords
Nanoparticle; Cancer; Vaccine; Immunotherapy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yan, W., W. Chen, and L. Huang. 2008. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release 130: 22-28.   DOI
2 Venkataraman, S., J. L. Hedrick, Z. Y. Ong, C. Yang, P. L. Ee, P. T. Hammond, and Y. Y. Yang. 2011. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63: 1228-1246.   DOI
3 Florez, L., C. Herrmann, J. M. Cramer, C. P. Hauser, K. Koynov, K. Landfester, D. Crespy, and V. Mailander. 2012. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 8: 2222-2230.   DOI
4 Alexis, F., E. Pridgen, L. K. Molnar, and O. C. Farokhzad. 2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5: 505-515.   DOI
5 Kelly, C., C. Jefferies, and S. A. Cryan. 2011. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. 2011: 727241.
6 Nguyen, D. N., K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, and D. G. Anderson. 2012. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl. Acad. Sci. USA 109: E797-803.   DOI
7 Geissmann, F., S. Jung, and D. R. Littman. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71-82.   DOI
8 Lee, I. H., H. K. Kwon, S. An, D. Kim, S. Kim, M. K. Yu, J. H. Lee, T. S. Lee, S. H. Im, and S. Jon. 2012. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. Engl. 51: 8800-8805.   DOI
9 Craparo, E. F. and M. L. Bondi. 2012. Application of polymeric nanoparticles in immunotherapy. Curr. Opin. Allergy Clin. Immunol. 12: 658-664.   DOI
10 Smith, D. M., J. K. Simon, and J. R. Baker, Jr. 2013. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13: 592-605.   DOI
11 Serda, R. E. 2013. Particle platforms for cancer immunotherapy. Int. J. Nanomedicine 8: 1683-1696.
12 Rodriguez-Limas, W. A., K. Sekar, and K. E. Tyo. 2013. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. In press: http://dx.doi.org/10.1016/j.copbio. 2013.02.008.
13 Yuba, E., A. Harada, Y. Sakanishi, S. Watarai, and K. Kono. 2013. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 34: 3042-3052.   DOI
14 Syed, S., A. Zubair, and M. Frieri. 2013. Immune response to nanomaterials: implications for medicine and literature review. Curr. Allergy. Asthma Rep. 13: 50-57.   DOI
15 Ditto, A. J., P. N. Shah, and Y. H. Yun. 2009. Non-viral gene delivery using nanoparticles. Expert. Opin. Drug Deliv. 6: 1149-1160.   DOI
16 Hua, S. and P. J. Cabot. 2013. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition. Pain Physician 16: E199-216.
17 Gregory, A. E., R. Titball, and D. Williamson. 2013. Vaccine delivery using nanoparticles. Front Cell Infect. Microbiol. 3:1-13. doi: 10.3389/fcimb.2013.00013
18 DeMuth, P. C., J. J. Moon, H. Suh, P. T. Hammond, and D. J. Irvine. 2012. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6: 8041-8051.   DOI
19 Hadinoto, K., A. Sundaresan, and W. S. Cheow. 2013. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. In press : http://dx.doi.org/10.1016/j.ejpb.2013.07.
20 Pawar, D., S. Mangal, R. Goswami, and K. S. Jaganathan. 2013. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur. J. Pharm. Biopharm. In press : http://dx.doi. org/10.1016/j.ejpb.2013.06.017
21 Lee, J. S., D. H. Kim, C. M. Lee, T. K. Ha, K. T. Noh, J. W. Park, D. R. Heo, K. H. Son, I. D. Jung, E. K. Lee, Y. K. Shin, S. C. Ahn, and Y. M. Park. 2011. Deoxypodophyllotoxin induces a Th1 response and enhances the antitumor efficacy of a dendritic cell-based vaccine. Immune Netw. 11: 79-94.   DOI
22 Noh, K. T., S. J. Shin, K. H. Son, I. D. Jung, H. K. Kang, S. J. Lee, E. K. Lee, Y. K. Shin, J. C. You, and Y. M. Park. 2012. The Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein, a toll-like receptor 4 agonist, enhances dendritic cell-based cancer vaccine potency. Exp. Mol. Med. 44: 340-349.   DOI
23 Cho, N. H., T. C. Cheong, J. H. Min, J. H. Wu, S. J. Lee, D. Kim, J. S. Yang, S. Kim, Y. K. Kim, and S. Y. Seong. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6: 675-682.   DOI
24 Xiang, S. D., K. Wilson, S. Day, M. Fuchsberger, and M. Plebanski. 2013. Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods 60: 232-241.   DOI
25 Noh, Y. W., J. H. Hong, S. M. Shim, H. S. Park, H. H. Bae, E. K. Ryu, J. H. Hwang, C. H. Lee, S. H. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2013. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. Int. Ed. Engl. 52: 7684-7689.   DOI
26 Prasad, S., V. Cody, J. K. Saucier-Sawyer, W. M. Saltzman, C. T. Sasaki, R. L. Edelson, M. A. Birchall, and D. J. Hanlon. 2011. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 7: 1-10.   DOI
27 Silva, J. M., M. Videira, R. Gaspar, V. Preat, and H. F. Florindo. 2013. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 168: 179-199.   DOI
28 Nembrini, C., A. Stano, K. Y. Dane, M. Ballester, A. J. van der Vlies, B. J. Marsland, M. A. Swartz, and J. A. Hubbell. 2011. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl. Acad. Sci. USA 108: E989-997.   DOI
29 Andrade, F., D. Rafael, M. Videira, D. Ferreira, A. Sosnik, and B. Sarmento. 2013. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev. In press : http://dx.doi.org/10.1016/j.addr. 2013.07.020
30 Suh, W. H., K. S. Suslick, G. D. Stucky, and Y. H. Suh. 2009. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87: 133-170.   DOI
31 Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad. 2008. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83: 761-769.   DOI
32 Kim, J. H., Y. W. Noh, M. B. Heo, M. Y. Cho, and Y. T. Lim. 2012. Multifunctional hybrid nanoconjugates for efficient in vivo delivery of immunomodulating oligonucleotides and enhanced antitumor immunity. Angew. Chem. Int. Ed. Engl. 51: 9670-9673.   DOI
33 Kotagiri, N., J. S. Lee, and J. W. Kim. 2013. Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics. J. Biomed. Nanotechnol. 9: 1008-1016.   DOI
34 Kanekiyo, M., C. J. Wei, H. M. Yassine, P. M. McTamney, J. C. Boyington, J. R. Whittle, S. S. Rao, W. P. Kong, L. Wang, and G. J. Nabel. 2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499: 102-106.   DOI
35 Perry, J. L., K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones, J. C. Luft, M. Napier, J. E. Bear, and J. M. DeSimone. 2012. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12: 5304-5310.   DOI
36 Demento, S. L., S. C. Eisenbarth, H. G. Foellmer, C. Platt, M. J. Caplan, W. Mark Saltzman, I. Mellman, M. Ledizet, E. Fikrig, R. A. Flavell, and T. M. Fahmy. 2009. Inflammasomeactivating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27: 3013-3021.   DOI
37 Diwan, M., M. Tafaghodi, and J. Samuel. 2002. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release 85: 247-262.   DOI
38 Clawson, C., C. T. Huang, D. Futalan, D. M. Seible, R. Saenz, M. Larsson, W. Ma, B. Minev, F. Zhang, M. Ozkan, C. Ozkan, S. Esener, and D. Messmer. 2010. Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine 6: 651-661.   DOI
39 Liu, S. Y., W. Wei, H. Yue, D. Z. Ni, Z. G. Yue, S. Wang, Q. Fu, Y. Q. Wang, G. H. Ma, and Z. G. Su. 2013. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials 34: 8291-8300.   DOI
40 Shen, H., A. L. Ackerman, V. Cody, A. Giodini, E. R. Hinson, P. Cresswell, R. L. Edelson, W. M. Saltzman, and D. J. Hanlon. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsu lated in biodegradable nanoparticles. Immunology 117: 78-88.   DOI
41 Shima, F., T. Akagi, T. Uto, and M. Akashi, 2013. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials 34: 9709-9716.   DOI
42 Reddy, S. T., A. J. van der Vlies, E. Simeoni, V. Angeli, G. J. Randolph, C. P. O'Neil, L. K. Lee, M. A. Swartz, and J. A. Hubbell. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25: 1159-1164.   DOI
43 Bachmann, M. F. and G. T. Jennings. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10: 787-796.   DOI
44 Foged, C., B. Brodin, S. Frokjaer, and A. Sundblad. 2005. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298: 315-322.   DOI
45 Mottram, P. L., D. Leong, B. Crimeen-Irwin, S. Gloster, S. D. Xiang, J. Meanger, R. Ghildyal, N. Vardaxis, and M. Plebanski. 2007. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4: 73-84.   DOI
46 Thurn, K. T., E. Brown, A. Wu, S. Vogt, B. Lai, J. Maser, T. Paunesku, and G. E. Woloschak. 2007. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2: 430-441.   DOI