Browse > Article
http://dx.doi.org/10.4110/in.2013.13.1.10

Alum Directly Modulates Murine B Lymphocytes to Produce IgG1 Isotype  

Jin, Bo-Ra (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Kim, Sun-Jin (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Lee, Jeong-Min (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Kang, Seong-Ho (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Han, Hye-Ju (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Jang, Young-Saeng (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Seo, Goo-Young (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Kim, Pyeung-Hyeun (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Publication Information
IMMUNE NETWORK / v.13, no.1, 2013 , pp. 10-15 More about this Journal
Abstract
Aluminum hydroxide (alum) is the most widely used adjuvant in human vaccines. Nevertheless, it is virtually unknown whether alum acts on B cells. In the present study, we explored the direct effect of alum on Ig expression by murine B cells in vitro. LPS-activated mouse spleen B cells were cultured with alum, and the level of isotype-specific Ig secretion, IgG1 secreting cell numbers, and Ig germ-line transcripts (GLT) were measured using ELISA, ELISPOT, and RT-PCR, respectively. Alum consistently enhanced total IgG1 production, numbers of IgG1 secreting cells, and $GLT{\gamma}1$ expression. These results demonstrate that alum can directly cause IgG1 isotype switching leading to IgG1 production.
Keywords
Alum; IgG1; B lymphocyte; Isotype switch;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Glenny, A., C. Pope, H. Waddington, and U. Wallace. 1926. The antigenic value of toxoid precipitated by potassium alum. J. Pathol. Bacteriol. 26: 38-39.
2 Hutchison, S., R. A. Benson, V. B. Gibson, A. H. Pollock, P. Garside, and J. M. Brewer. 2012. Antigen depot is not required for alum adjuvanticity. FASEB J. 26: 1272-1279.   DOI
3 Munks, M. W., A. S. McKee, M. K. Macleod, R. L. Powell, J. L. Degen, N. A. Reisdorph, J. W. Kappler, and P. Marrack. 2010. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116: 5191-5199.   DOI
4 Kool, M., T. Soullié, M. van Nimwegen, M. A. Willart, F. Muskens, S. Jung, H. C. Hoogsteden, H. Hammad, and B. N. Lambrecht. 2008. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205: 869-882.   DOI
5 Kool, M., V. Pétrilli, T. De Smedt, A. Rolaz, H. Hammad, M. van Nimwegen, I. M. Bergen, R. Castillo, B. N. Lambrecht, and J. Tschopp. 2008. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181: 3755-3759.   DOI
6 Li, H., S. B. Willingham, J. P. Ting, and F. Re. 2008. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 181: 17-21.   DOI
7 Eisenbarth, S. C., O. R. Colegio, W. O'Connor, F. S. Sutterwala, and R. A. Flavell. 2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453: 1122-1126.   DOI
8 Franchi, L. and G. Núñez. 2008. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38: 2085-2089.   DOI
9 McKee, A. S., M. W. Munks, M. K. MacLeod, C. J. Fleenor, N. Van Rooijen, J. W. Kappler, and P. Marrack. 2009. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183: 4403-4414.   DOI
10 Allen, A. C., L. Layward, S. J. Harper, and J. Feehally. 1994. In vitro immunoglobulin isotype suppression in immunoglobulin A nephropathy. Exp. Nephrol. 2: 166-170.
11 Wang, H. B. and P. F. Weller. 2008. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 83: 817-821.   DOI
12 Shah, H. B., T. S. Devera, P. Rampuria, G. A. Lang, and M. L Lang. 2012. Type II NKT cells facilitate Alum-sensing and humoral immunity. J. Leukoc. Biol. 92: 883-893.   DOI
13 Peng, S. L. 2005. Signaling in B cells via Toll-like receptors. Curr. Opin. Immunol. 17: 230-236.   DOI
14 Nakamura, M., S. Kondo, M. Sugai, M. Nazarea, S. Imamura, and T. Honjo. 1996. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8: 193-201.   DOI
15 Park, S. R., J. H. Lee, and P. H. Kim. 2001. Smad3 and Smad4 mediate transforming growth factor-beta1-induced IgA expression in murine B lymphocytes. Eur. J. Immunol. 31: 1706-1715.   DOI
16 Gonda, H., M. Sugai, Y. Nambu, T. Katakai, Y. Agata, K. J. Mori, Y. Yokota, and A. Shimizu. 2003. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198: 1427-1437.   DOI
17 Kim, P. H. and M. F. Kagnoff. 1990. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J. Immunol. 145: 3773-3778.
18 Bergstedt-Lindqvist, S., H. B. Moon, U. Persson, G. Möller, C. Heusser, and E. Severinson. 1988. Interleukin 4 instructs uncommitted B lymphocytes to switch to IgG1 and IgE. Eur. J. Immunol. 18: 1073-1077.   DOI
19 Muramatsu, M., K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102: 553-563.   DOI
20 Li, S. C., P. B. Rothman, J. Zhang, C. Chan, D. Hirsh, and F. W. Alt. 1994. Expression of I mu-C gamma hybrid germline transcripts subsequent to immunoglobulin heavy chain class switching. Int. Immunol. 6: 491-497.   DOI
21 Kinoshita, K., M. Harigai, S. Fagarasan, M. Muramatsu, and T. Honjo. 2001. A hallmark of active class switch recombination: transcripts directed by I promoters on looped-out circular DNAs. Proc. Natl. Acad. Sci. U. S. A. 98: 12620-12623.   DOI
22 Revy, P., T. Muto, Y. Levy, F. Geissmann, A. Plebani, O. Sanal, N. Catalan, M. Forveille, R. Dufourcq-Labelouse, A. Gennery, I. Tezcan, F. Ersoy, H. Kayserili, A. G. Ugazio, N. Brousse, M. Muramatsu, L. D. Notarangelo, K. Kinoshita, T. Honjo, A. Fischer, and A. Durandy. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102: 565-575.   DOI
23 Marichal, T., K. Ohata, D. Bedoret, C. Mesnil, C. Sabatel, K. Kobiyama, P. Lekeux, C. Coban, S. Akira, K. J. Ishii, F. Bureau, and C. J. Desmet. 2011. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17: 996-1002.   DOI
24 Flach, T. L., G. Ng, A. Hari, M. D. Desrosiers, P. Zhang, S. M. Ward, M. E. Seamone, A. Vilaysane, A. D. Mucsi, Y. Fong, E. Prenner, C. C. Ling, J. Tschopp, D. A. Muruve, M. W. Amrein, and Y. Shi. 2011. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17: 479-487.   DOI