Browse > Article
http://dx.doi.org/10.4110/in.2012.12.4.139

The Past, Present, and Future of Adoptive T Cell Therapy  

Choi, Dong-Hoon (Cellular Immunology Laboratory, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science & Technology)
Kim, Tai-Gyu (Department of Microbiology and Immunology, College of Medicine, The Catholic University of Korea)
Sung, Young-Chul (Cellular Immunology Laboratory, Division of Molecular and Life Science, POSTECH Biotech Center, Pohang University of Science & Technology)
Publication Information
IMMUNE NETWORK / v.12, no.4, 2012 , pp. 139-147 More about this Journal
Abstract
Although adoptive T cell therapy (ACT) has become a promising immunotherapeutic regime for cancer treatment, its effectiveness has been hindered by several inherent shortcomings regarding safety and efficacy. During the past few decades, several strategies for enhancing the efficacy of ACT have been developed and introduced in clinic. This review will summarize not only the past approaches but also the latest strategies which have been shown to enhance the anticancer activity of ACT.
Keywords
Adoptive T cell therapy; Gene modification; Immunotherapy; Cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rosenberg, S. A., N. P. Restifo, J. C. Yang, R. A. Morgan, and M. E. Dudley. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer8: 299-308.   DOI   ScienceOn
2 Delorme, E. J., and P. Alexander. 1964. Treatment of primary fibrosarcoma in the rat with immune lymphocytes. Lancet.2: 117-120.
3 Eberlein, T. J., M. Rosenstein, and S. A. Rosenberg. 1982. Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J. Exp. Med. 156: 385-397.   DOI   ScienceOn
4 Donohue, J. H., M. Rosenstein, A. E. Chang, M. T. Lotze, R. J. Robb, and S. A. Rosenberg. 1984. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J. Immunol. 132: 2123-2128.
5 Rosenberg, S. A., M. T. Lotze, J. C. Yang, S. L. Topalian, A. E. Chang, D. J. Schwartzentruber, P. Aebersold, S. Leitman, W. M. Linehan, and C. A. Seipp, et al. 1993. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J. Natl. Cancer Inst. 85: 622-632.   DOI   ScienceOn
6 Rosenberg, S. A., P. Spiess, and R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor- infiltrating lymphocytes Science 233: 1318-1321.   DOI
7 Rosenberg, S. A., B. S. Packard, P. M. Aebersold, D. Solomon, S. L. Topalian, S. T. Toy, P. Simon, M. T. Lotze, J. C. Yang, and C. A. Seipp, et al. 1988. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319: 1676-1680.   DOI   ScienceOn
8 Rosenberg, S. A., J. R. Yannelli, J. C. Yang, S. L. Topalian, D. J. Schwartzentruber, J. S. Weber, D. R. Parkinson, C. A. Seipp, J. H. Einhorn, and D. E. White. 1994. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst.86: 1159-1166.   DOI   ScienceOn
9 Seiter, S., V. Monsurro, M. B. Nielsen, E. Wang, M. Provenzano, J. R. Wunderlich, S. A. Rosenberg, and F. M. Marincola. 2002. Frequency of MART-1/MelanA and gp100/PMel17-specific T cells in tumor metastases and cultured tumor-infiltrating lymphocytes. J. Immunother. 25:252-263.   DOI   ScienceOn
10 Dudley, M. E., J. R. Wunderlich, T. E. Shelton, J. Even, and S. A. Rosenberg. 2003. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26: 332-342.   DOI   ScienceOn
11 Muranski, P., A. Boni, C. Wrzesinski, D. E. Citrin, S. A. Rosenberg, R. Childs, and N. P. Restifo. 2006. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat. Clin. Pract. Oncol. 3: 668-681.
12 Antony, P. A., C. A. Piccirillo, A. Akpinarli, S. E. Finkelstein, P. J. Speiss, D. R. Surman, D. C. Palmer, C. C. Chan, C. A. Klebanoff, W. W. Overwijk, S. A. Rosenberg, and N. P. Restifo. 2005. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174: 2591-2601.   DOI
13 Dummer, W., A. G. Niethammer, R. Baccala, B. R. Lawson, N. Wagner, R. A. Reisfeld, and A. N. Theofilopoulos. 2002. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. 110: 185-192.   DOI
14 Gattinoni, L., S. E. Finkelstein, C. A. Klebanoff, P. A. Antony, D. C. Palmer, P. J. Spiess, L. N. Hwang, Z. Yu, C. Wrzesinski, D. M. Heimann, C. D. Surh, S. A. Rosenberg, and N. P. Restifo. 2005. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202:907-912.   DOI   ScienceOn
15 Wrzesinski, C., C. M. Paulos, L. Gattinoni, D. C. Palmer, A. Kaiser, Z. Yu, S. A. Rosenberg, and N. P. Restifo. 2007. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J. Clin.Invest. 117: 492-501.   DOI   ScienceOn
16 Dudley, M. E., J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850-854.   DOI   ScienceOn
17 Gattinoni, L., C. A. Klebanoff, D. C. Palmer, C. Wrzesinski, K. Kerstann, Z. Yu, S. E. Finkelstein, M. R. Theoret, S. A. Rosenberg, and N. P. Restifo. 2005. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115: 1616-1626.   DOI   ScienceOn
18 Berger, C., M. C. Jensen, P. M. Lansdorp, M. Gough, C. Elliott, and S. R. Riddell. 2008. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118:294-305.   DOI   ScienceOn
19 Gattinoni, L., E. Lugli, Y. Ji, Z. Pos, C. M. Paulos, M. F. Quigley, J. R. Almeida, E. Gostick, Z. Yu, C. Carpenito, E. Wang, D. C. Douek, D. A. Price, C. H. June, F. M. Marincola, M. Roederer, and N. P. Restifo. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17: 1290-1297.   DOI   ScienceOn
20 Klebanoff, C. A., L. Gattinoni, D. C. Palmer, P. Muranski, Y. Ji, C. S. Hinrichs, Z. A. Borman, S. P. Kerkar, C. D. Scott, S. E. Finkelstein, S. A. Rosenberg, and N. P. Restifo. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17:5343-5352.
21 Bleakley, M. and S. R. Riddell. 2011. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89: 396-407.   DOI   ScienceOn
22 Parkhurst, M. R., J. Joo, J. P. Riley, Z. Yu, Y. Li, P. F. Robbins, and S. A. Rosenberg. 2009. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 onhuman colorectal cancer cells. Clin. Cancer Res. 15: 169-180.   DOI   ScienceOn
23 Morgan, R. A., Dudley, M. E., Y. Y. Yu, Z. Zheng, P. F. Robbins, M. R. Theoret, J. R. Wunderlich, M. S. Hughes, N. P. Restifo, and S. A. Rosenberg. 2003. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. 171: 3287-3295.   DOI
24 Schaft, N., R. A. Willemsen, de J. Vries, B. Lankiewicz, B. W. Essers, J. W. Gratama, C. G. Figdor, R. L. Bolhuis, R. Debets, and G. J. Adema. 2003. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J. Immunol. 170: 2186-2194.   DOI
25 Morgan, R. A., M. E. Dudley, J. R. Wunderlich, M. S. Hughes, J. C. Yang, R. M. Sherry, R. E. Royal, S. L. Topalian, U. S. Kammula, N. P. Restifo, Z. Zheng, A. Nahvi, C. R. de Vries, L. J. Rogers-Freezer, S. A. Mavroukakis, and S. A. Rosenberg. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126-129.   DOI   ScienceOn
26 Theoret, M. R., C. J. Cohen, A. V. Nahvi, L. T. Ngo, K. B. Suri, D. J. Jr. Powell, M. E. Dudley, R. A. Morgan, and S. A. Rosenberg. 2008. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19: 1219-1232.   DOI   ScienceOn
27 Nagai, K., T. Ochi, H. Fujiwara, J. An, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, J. J. Melenhorst, E. Gostick, D. A. Price, E. Ishii, and M. Yasukawa. 2011. Aurora kinase A-specific T-cell receptor gene transfer redirects T lymphocytes to display effective antileukemia reactivity. Blood119: 368-376.
28 Kronig, H., K. Hofer, H. Conrad, P. Guilaume, J. Muller, M. Schiemann, V. Lennerz, A. Cosma, C. Peschel, D. H. Busch, P. Romero, and H. Bernhard. 2009. Allorestricted T lymphocytes with a high avidity T-cell receptor towards NY-ESO-1 have potent anti-tumor activity. Int. J. Cancer 125: 649-655.   DOI   ScienceOn
29 Zhao, Y., Z. Zheng, P. F. Robbins, H. T. Khong, S. A. Rosenberg, and R. A. Morgan. 2005. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumor cell lines. J. Immunol. 174: 4415-4423.   DOI
30 Thomas, S., S. A. Xue, M. Cesco-Gaspere, E. San Jose, D. P. Hart, V. Wong, R. Debets, B. Alarcon, E. Morris, and H. J. Stauss. 2007. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J. Immunol.179: 5803-5810.   DOI
31 Johnson, L. A., R. A. Morgan, M. E. Dudley, L. Cassard, J. C. Yang, M. S. Hughes, U. S. Kammula, R. E. Royal, R. M. Sherry, J. R. Wunderlich, C. C. Lee, N. P. Restifo, S. L. Schwarz, A. P. Cogdill, R. J. Bishop, H. Kim, C. C. Brewer, S. F. Rudy, C. VanWaes, J. L. Davis, A. Mathur, R. T. Ripley, D. A. Nathan, C. M. Laurencot, and S. A. Rosenberg. 2009. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114: 535-546.   DOI   ScienceOn
32 Parkhurst, M. R., J. C. Yang, R. C. Langan, M. E. Dudley, D. A. Nathan, S. A. Feldman, J. L. Davis, R. A. Morgan, M. J. Merino, R. M. Sherry, M. S. Hughes, U. S. Kammula, G. Q. Phan, R. M. Lim, S. A. Wank, N. P. Restifo, P. F. Robbins, C. M. Laurencot, and S. A. Rosenberg. 2011. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19: 620-626.   DOI   ScienceOn
33 Bendle, G. M., C. Linnemann, A. I. Hooijkaas, L. Bies, M. A. de Witte, A. Jorritsma, A. D. Kaiser, N. Pouw, R. Debets, E. Kieback, W. Uckert, J. Y. Song, J. B. Haanen, and T. N. Schumacher. 2010. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16:565-570.   DOI   ScienceOn
34 Cohen, C. J., Y. F. Li, M. El-Gamil, P. F. Robbins, S. A. Rosenberg, and R. A. Morgan. 2007. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67: 3898-3903.   DOI   ScienceOn
35 Cohen, C. J., Y. Zhao, Z. Zheng, S. A. Rosenberg, and R. A. Morgan. 2006. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66: 8878-8886.   DOI   ScienceOn
36 Goff, S. L., L. A. Johnson, M. A. Black, H. Xu, Z. Zheng, C. J. Cohen, R. A. Morgan, S. A. Rosenberg, and S. A. Feldman. 2010. Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunol. Immunother. 59: 1551-1560.   DOI   ScienceOn
37 Kuball, J., M. L. Dossett, M. Wolfl, W. Y. Ho, R. H. Voss, C. Fowler, and P. D. Greenberg. 2007. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109: 2331-2338.   DOI   ScienceOn
38 Voss, R. H., R. A. Willemsen, J. Kuball, M. Grabowski, R. Engel, R. S. Intan, P. Guillaume, P. Romero, C. Huber, and M. Theobald. 2008. Molecular design of the Calphabeta interface favors specific pairing of introduced TCRalphabeta in human T cells. J. Immunol. 180: 391-401.   DOI
39 Sebestyen, Z., E. Schooten, T. Sals, I. Zaldivar, E. San Jose, B. Alarcon, S. Bobisse, A. Rosato, J. Szollosi, J. W. Gratama, R. A. Willemsen, and R. Debets. 2008. Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J. Immunol. 180: 7736-7746.   DOI
40 Roszik, J., Z. Sebestyen, C. Govers, Y. Guri, A. Szoor, Z. Palyi-Krekk, G. Vereb, P. Nagy, J. Szollosi, and R. Debets. 2011. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:$\zeta$, a candidate transgene for TCR gene therapy. Eur. J. Immunol. 41:1288-1297.   DOI   ScienceOn
41 Ochi, T., H. Fujiwara, S. Okamoto, J. An, K. Nagai, T. Shirakata, J. Mineno, K. Kuzushima, H. Shiku, and M. Yasukawa. 2011. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118: 1495-1503.   DOI   ScienceOn
42 Zhao, Y., Q. J. Wang, S. Yang, J. N. Kochenderfer, Z. Zheng, X. Zhong, M. Sadelain, Z. Eshhar, S. A. Rosenberg, and R. A. Morgan. 2009. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183: 5563-5574.   DOI   ScienceOn
43 van der Veken, L. T., M. Coccoris, E. Swart, J. H. Falkenburg, T. N. Schumacher, and M. H. Heemskerk. 2009. Alpha beta T cell receptor transfer to gamma delta T cells generates functional effector cells without mixed TCR dimers in vivo. J. Immunol. 182: 164-170.   DOI
44 Sadelain, M., R. Brentjens, and I. Riviere. 2009. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21: 215-223.   DOI   ScienceOn
45 Maher, J., R. J. Brentjens, G. Gunset, I. Riviere, and M. Sadelain. 2002. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat. Biotechnol. 20: 70-75.   DOI   ScienceOn
46 Kowolik, C. M., M. S. Topp, S. Gonzalez, T. Pfeiffer, S. Olivares, N. Gonzalez, D. D. Smith, S. J. Forman, M. C. Jensen, and L. J. Cooper. 2006. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66: 10995-11004.   DOI
47 Imai, C., K. Mihara, M. Andreansky, I. C. Nicholson, C. H. Pui, T. L. Geiger, and D. Campana. 2004. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 18: 676-684.   DOI
48 Wang, J., M. Jensen, Y. Lin, X. Sui, E. Chen, C. G. Lindgren, B. Till, A. Raubitschek, S. J. Forman, X. Qian, S. James, P. Greenberg, S. Riddell, and O. W. Press. 2007. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18: 712-725.   DOI
49 Charo, J., S. E. Finkelstein, N. Grewal, N. P. Restifo, P. F. Robbins, and S. A. Rosenberg. 2005. Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res. 65:2001-2008.   DOI
50 Eaton, D., D. E. Gilham, A. O'Neill, and R. E. Hawkins. 2002. Retroviral transduction of human peripheral blood lymphocytes with Bcl-X(L) promotes in vitro lymphocyte survival in pro-apoptotic conditions. Gene Ther. 9: 527-535.   DOI
51 Foster, A. E., G. Dotti, A. Lu, M. Khalil, M. K. Brenner, H. E. Heslop, C. M. Rooney, and C. M. Bollard. 2008. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 31:500-505.   DOI
52 Dotti, G., B. Savoldo, M. Pule, K. C. Straathof, E. Biagi, E. Yvon, S. Vigouroux, M. K. Brenner, and C. M. Rooney. 2005. Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105: 4677-4684.   DOI
53 Dagarag, M., T. Evazyan, N. Rao, and R. B. Effros. 2004. Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J. Immunol. 173: 6303-6311.   DOI
54 Zhou, J., X. Shen, J. Huang, R. J. Hodes, S. A. Rosenberg, and P. F. Robbins. 2005. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175: 7046-7052.   DOI
55 Stephan, M. T., V. Ponomarev, R. J. Brentjens, A. H. Chang, K. V. Dobrenkov, G. Heller, and M. Sadelain. 2007. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med.13: 1440-1449.   DOI
56 Morgan, R. A., J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg. 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18: 843-851.   DOI
57 Marktel, S., Z. Magnani, F. Ciceri, S. Cazzaniga, S. R. Riddell, C. Traversari, C. Bordignon, and C. Bonini. 2003. Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood 101:1290-1298.   DOI
58 Mercier-Letondal, P., M. Deschamps, D. Sauce, J. M. Certoux, N. Milpied, B. Lioure, J. Y. Cahn, E. Deconinck, C. Ferrand, P. Tiberghien, and E. Robinet. 2008. Early immune response against retrovirally transduced herpes simplex virus thymidine kinase-expressing gene-modified T cells coinfused with a T cell-depleted marrow graft: an altered immune response? Hum. Gene Ther. 19: 937-950.   DOI
59 Traversari, C., S. Marktel, Z. Magnani, P. Mangia, V. Russo, F. Ciceri, C. Bonini, and C. Bordignon. 2007. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109: 4708-4715.   DOI
60 Berger, C., M. E. Flowers, E. H. Warren, and S. R. Riddell. 2006. Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107: 2294-2302.   DOI
61 Deschamps, M., P. Mercier-Lethondal, J. M. Certoux, C. Henry, B. Lioure, C. Pagneux, J. Y. Cahn, E. Deconinck, E. Robinet, P. Tiberghien, and C. Ferrand. 2007. Deletions within the HSV-tk transgene in long-lasting circulating gene-modified T cells infused with a hematopoietic graft. Blood 110:3842-3852.   DOI
62 Sato, T., A. Neschadim, M. Konrad, D. H. Fowler, A. Lavie, and J. A. Medin. 2007. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol.Ther. 15: 962-970.   DOI
63 Di Stasi, A., S. K. Tey, G. Dotti, Y. Fujita, A. Kennedy-Nasser, C. Martinez, K. Straathof, E. Liu, A. G. Durett, B. Grilley, H. Liu, C. R. Cruz, B. Savoldo, A. P. Gee, J. Schindler, R. A. Krance, H. E. Heslop, D. M. Spencer, C. M. Rooney, and M. K. Brenner. 2011. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365: 1673-1683.   DOI
64 Thomis, D. C., S. Marktel, C. Bonini, C. Traversari, M. Gilman, C. Bordignon, and T. Clackson. 2001. A Fas-based suicide switch in human T cells for the treatment of graft-versus- host disease. Blood 97: 1249-1257.   DOI
65 Griffioen, M., E. H. van Egmond, M. G. Kester, R. Willemze, J. H. Falkenburg, and M. H. Heemskerk. 2009. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica 94: 1316-1320.   DOI
66 Yoon, S. H., J. M. Lee, H. I. Cho, E. K. Kim, H. S. Kim, M. Y. Park, and T. G. Kim. 2009. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16:489-497.   DOI
67 Phan, G. Q., J. C. Yang, R. M. Sherry, P. Hwu, S. L. Topalian, D. J. Schwartzentruber, N. P. Restifo, L. R. Haworth, C. A. Seipp, L. J. Freezer, K. E. Morton, S. A. Mavroukakis, P. H. Duray, S. M. Steinberg, J. P. Allison, T. A. Davis, and S. A. Rosenberg. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U.S.A. 100: 8372-8377.   DOI
68 Cooper, L. J., Z. Al-Kadhimi, L. M. Serrano, T. Pfeiffer, S. Olivares, A. Castro, W. C. Chang, S. Gonzalez, D. Smith, S. J. Forman, and M. C. Jensen. 2005. Enhanced antilymphoma efficacy of CD19-redirected influenza MP1-specific CTLs by cotransfer of T cells modified to present influenza MP1. Blood105: 1622-1631.   DOI
69 Meijer, S. L., A. Dols, S. M. Jensen, H. M. Hu, W. Miller, E. Walker, P. Romero, B. A. Fox, and W. J. Urba. 2007. Induction of circulating tumor-reactive CD8+ T cells after vaccination of melanoma patients with the gp100 209-2M peptide. J. Immunother. 30: 533-543.   DOI
70 Overwijk, W. W., M. R. Theoret, S. E. Finkelstein, D. R. Surman, L. A. de Jong, F. A. Vyth-Dreese, T. A. Dellemijn, P. A. Antony, P. J. Spiess, D. C. Palmer, D. M. Heimann, C. A. Klebanoff, Z. Yu, L. N. Hwang, L. Feigenbaum, A. M. Kruisbeek, S. A. Rosenberg, and N. P. Restifo. 2003. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198:569-580.   DOI
71 Paulos, C. M., C. Wrzesinski, A. Kaiser, C. S. Hinrichs, M. Chieppa, L. Cassard, D. C. Palmer, A. Boni, P. Muranski, Z. Yu, L. Gattinoni, P. A. Antony, S. A. Rosenberg, and N. P. Restifo. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117: 2197-2204.   DOI
72 Waldmann, T. A. 2006. The biology of interleukin-2 and interleukin- 15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6: 595-601.   DOI
73 Choi, D., K. S. Kim, S. H. Yang, D. H. Chung, B. Song, J. Sprent, J. H. Cho, and Y. C. Sung. 2011. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses. Cancer Res. 71:7442-7451.   DOI
74 Matsuda, J. L., T. Mallevaey, J. Scott-Browne, and L. Gapin. 2008. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20: 358-368.   DOI
75 Zhou, D., C. Cantu, 3rd, Y. Sagiv, N. Schrantz, A. B. Kulkarni, X. Qi, D. J. Mahuran, C. R. Morales, G. A. Grabowski, K. Benlagha, P. Savage, A. Bendelac, and L. Teyton. 2004. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303: 523-527.   DOI
76 Kang, S. J. and P. Cresswell. 2004. Saposins facilitate CD1drestricted presentation of an exogenous lipid antigen to T cells. Nat. Immunol. 5: 175-181.
77 Brigl, M. and M. B. Brenner. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22: 817-890.   DOI