Browse > Article
http://dx.doi.org/10.4110/in.2010.10.3.85

The Impact of Nanomaterials in Immune System  

Jang, Jiyoung (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University)
Lim, Dae-Hyoun (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University)
Choi, In-Hong (Department of Microbiology, College of Medicine and Nanomedical National Core Research Center, Yonsei University)
Publication Information
IMMUNE NETWORK / v.10, no.3, 2010 , pp. 85-91 More about this Journal
Abstract
As a nanotechnology has been actively applied to the overall areas of scientific fields, it is necessary to understand the characteristic features, physical behaviors and the potential effects of exposure to nanomaterials and their toxicity. In this article we review the immunological influences induced by several nanomaterials and emphasize establishment of the animal models to estimate the impact of these nanomaterials on development of immunological diseases.
Keywords
Nanomaterials; Immune response; Cytokines; Immunological diseases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duffin R, Mills NL, Donaldson K: Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 48;561-572, 2007   DOI   ScienceOn
2 Alley D, Langley-Turnbaugh S, Gordon N, Wise J, Van Epps G, Jalbert A: The effect of PM10 on human lung fibroblasts. Toxicol Ind Health 25;111-120, 2009   DOI   ScienceOn
3 Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, Brauer M: Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 118;284-290, 2010
4 Nogueira JB: Air pollution and cardiovascular disease. Rev Port Cardiol 28;715-733, 2009
5 Heintz NH, Janssen-Heininger YM, Mossman BT: Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42;133-139, 2010   DOI   ScienceOn
6 Rinaudo C, Croce A, Musa M, Fornero E, Allegrina M, Trivero P, Bellis D, Sferch D, Toffalorio F, Veronesi G, Pelosi G: Study of inorganic particles, fibers, and asbestos bodies by variable pressure scanning electron microscopy with annexed energy dispersive spectroscopy and micro- Raman spectroscopy in thin sections of lung and pleural plaque. Appl Spectrosc 64;571-577, 2010   DOI   ScienceOn
7 Eom HJ, Choi J: Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro 23;1326-1332, 2009   DOI   ScienceOn
8 Eom HJ, Choi J: Oxidative stress of $CeO_{2}$ nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187;77-83, 2009   DOI   ScienceOn
9 Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T: Effects of nano particles on antigen- related airway inflammation in mice. Respir Res 6;106, 2005   DOI   ScienceOn
10 Alberg T, Cassee FR, Groeng EC, Dybing E, Lovik M: Fine ambient particles from various sites in europe exerted a greater IgE adjuvant effect than coarse ambient particles in a mouse model. J Toxicol Environ Health A 72;1-13, 2009
11 Park EJ, Yoon J, Choi K, Yi J, Park K: Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260;37-46, 2009   DOI   ScienceOn
12 Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Sun B, Xing G, Dong J, Zhao Y, Chai Z, Chen C: The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Biomaterials 30;3934-3945, 2009   DOI   ScienceOn
13 Arantes-Costa FM, Lopes FD, Toledo AC, Magliarelli-Filho PA, Moriya HT, Carvalho-Oliveira R, Mauad T, Saldiva PH, Martins MA: Effects of residual oil fly ash (ROFA) in mice with chronic allergic pulmonary inflammation. Toxicol Pathol 36;680-686, 2008   DOI   ScienceOn
14 Niwa Y, Hiura Y, Sawamura H, Iwai N: Inhalation exposure to carbon black induces inflammatory response in rats. Circ J 72;144-149, 2008   DOI   ScienceOn
15 Koike E, Takano H, Inoue KI, Yanagisawa R, Sakurai M, Aoyagi H, Shinohara R, Kobayashi T: Pulmonary exposure to carbon black nanoparticles increases the number of antigen- presenting cells in murine lung. Int J Immunopathol Pharmacol 21;35-42, 2008   DOI
16 Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3;216-221, 2008   DOI   ScienceOn
17 Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA: Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5;354-359, 2010   DOI   ScienceOn
18 Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC: Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4; 747-751, 2009   DOI   ScienceOn
19 Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC: Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8;437-445, 2008   DOI   ScienceOn
20 Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ: SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234;378-390, 2009   DOI   ScienceOn
21 Ye SF, Wu YH, Hou ZQ, Zhang QQ: ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379;643-648, 2009   DOI   ScienceOn
22 Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, Wang WN, Endoh S, Uchida K, Nakazato T, Yamamoto K, Fukui H, Horie M, Yoshida Y, Iwahashi H, Nakanishi J: Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258;47-55, 2009   DOI   ScienceOn
23 Muller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 7(Suppl 1);S27-40, 2010   DOI
24 Nemmar A, Melghit K, Ali BH: The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med (Maywood) 233; 610-619, 2008   DOI   ScienceOn
25 Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38;371-376, 2008   DOI   ScienceOn
26 Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D: Microglial response to gold nanoparticles. ACS Nano 4;2595-2606, 2010   DOI   ScienceOn
27 Dreher KL: Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77;3-5, 2004
28 Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, Ichinose T: Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood) 234;314-322, 2009   DOI   ScienceOn
29 Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S: Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun 392;160-165, 2010   DOI   ScienceOn
30 Cho WS, Kim S, Han BS, Son WC, Jeong J: Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191;96-102, 2009   DOI   ScienceOn
31 Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG: Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242;56-65, 2010   DOI   ScienceOn
32 Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K: Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010 PMID: 20540983
33 Zhong CY, Zhou YM, Smith KR, Kennedy IM, Chen CY, Aust AE, Pinkerton KE: Oxidative injury in the lungs of neonatal rats following short-term exposure to ultrafine iron and soot particles. J Toxicol Environ Health A 73;837-847, 2010   DOI   ScienceOn
34 Lockman PR, Koziara JM, Mumper RJ, Allen DD: Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting 12;635-641, 2004   DOI   ScienceOn
35 Borm PJ, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S: Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90;23-32, 2006
36 Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73; 445-461, 2010   DOI   ScienceOn
37 Riviere G: European and international standardisation progress in the field of engineered nanoparticles. Inhal Toxicol 21(Suppl 1);2-7, 2009   DOI
38 Bergamaschi E, Bussolati O, Magrini A, Bottini M, Migliore L, Bellucci S, Iavicoli I, Bergamaschi A: Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Int J Immunopathol Pharmacol 19(4 Suppl);3-10, 2006
39 Jou MJ: Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev 60;1512-1526, 2008   DOI   ScienceOn
40 Xia T, Li N, Nel AE: Potential health impact of nanoparticles. Annu Rev Public Health 30;137-150, 2009   DOI   ScienceOn
41 Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S: Role of oxidative damage in toxicity of particulates. Free Radic Res 44;1-46, 2010   DOI   ScienceOn
42 Girod CE, King TE Jr: COPD: a dust-induced disease? Chest 128;3055-3064, 2005   DOI   ScienceOn
43 Biswas P, Wu CY: Nanoparticles and the environment. J Ai Waste Manage Assoc 55;708-746, 2005   DOI
44 Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K: Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 72;496-501, 2009   DOI   ScienceOn
45 Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2;2121-2134, 2008   DOI   ScienceOn
46 Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, Lee JP, Sohn KH, Park KL, Kim MK, Son SW: Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267;178-181, 2010   DOI   ScienceOn
47 Li X, Hu Y, Jin Z, Jiang H, Wen J: Silica-induced TNF-alpha and TGF-beta1 expression in RAW264.7 cells are dependent on Src-ERK/AP-1 pathways. Toxicol Mech Methods 19;51-58, 2009   DOI   ScienceOn
48 Xia T, Kovochich M, Liong M, Zink JI, Nel AE: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2;85-96, 2008   DOI   ScienceOn
49 Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF: Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38; 1404-1413, 2008   DOI   ScienceOn
50 Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A: Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 234;68-76, 2009   DOI   ScienceOn