Browse > Article

Theoretical Framework for Application and Development of Two-dimensional Numerical Landscape Evolution Models on a Geological Time Scale  

Byun, Jong-Min (Research Institute for Social Science Education, Seoul National University)
Publication Information
Journal of the Korean Geographical Society / v.46, no.3, 2011 , pp. 331-350 More about this Journal
Abstract
Advances in computer technology enabled us to simulate the integrated effects of various geomorphic processes on landscape evolution. This review introduces a theoretical framework for 2-dimensional numerical landscape evolution models (NLEMs) which have recently been used for various research purposes. In particular much attention is paid to the approaches deployed to model major geomorphic processes on a geological time scale in previous research. NLEMs can simulate landscape evolution by numerically solving the partial differential equation which represents the relationship among the geomorphic system components (GSCs). Simple process specifications of the relationships among GSCs on a long-term time scale in terms of quantification and attempts to combine processes represent the initial research on NLEMs. Later researchers have taken these simple NLEMs and elaborated on them. Introducing the theories of NLEMs in this review is expected to help researchers trying to utilize or develop NLEMs.
Keywords
numerical landscape evolution model; landscape evolution; numerical modeling; geomorphic system; process specification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Byun, J., 2011, Development and application of a numerical landscape evolution model to understand the uplift history of the Korean Peninsula, Ph.D. Dissertation, Seoul National University (in Korean).
2 Carson, M. A. and Kirkby, M. J., 1972, Hillslope form and process, Cambridge University Press.
3 Champel, B., van der Beek, P., Mugnier, J.-L., and Leturmy, P., 2002, Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature, Journal of Geophysical Research, 107(B6), 2111.
4 Codilean, A. T., Bishop, P., and Hoey, T. B., 2006, Surface process models and the links between tectonics and topography, Progress in Physical Geography, 30(3), pp. 307-333.   DOI   ScienceOn
5 Coulthard, T. J. and Macklin, M. G., 2001, How sensitive are river systems to climate and land-use changes? A model based evaluation, Journal of Quaternary Science, 16(4), 347-351.   DOI   ScienceOn
6 Culling, W. E. H., 1963, Soil creep and the development of hillside slopes, Journal of Geology, 71, 127-161.   DOI
7 Davis, W. M., 1899, The Geographical Cycle, The Geographical Journal, 14(5), 481-504.   DOI   ScienceOn
8 Densmore, A. L., Ellis, M. A., and Anderson, R. S., 1998, Landsliding and the evolution of normal-faultbounded mountains, Journal of Geophysical Research B: Solid Earth, 103(7), 15203-15219.   DOI
9 Fernandes, N. F. and Dietrich, W. E., 1997, Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments, Water Resources Research, 33(6), 1307-1318.   DOI   ScienceOn
10 Gilbert, G., 1877, Report on the Geology of the Henry Mountains, Washington.
11 Gilbert, G., 1909, The convexity of hilltops, The Journal of Geology, 17(4), 344-350.   DOI
12 Hack, J. T., 1960, Interpretation of erosional topography in humid temperate regions, American Journal of Science, 258(4), 80-97.
13 Hancock, G. R., Evans, K. G., Willgoose, G. R., Moliere, D. R., Saynor, M. J., and Loch, R. J., 2000, Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model, Australian Journal of Soil Research, 38(2), 249-264.   DOI   ScienceOn
14 Anderson, R. S., 2002, Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46(1-2), 35-58.   DOI
15 Ahnert, F., 1976, Brief description of a comprehensive three-dimensional process-response model of landform development, Zeitschrift fur Geomorphologie Supplementband, 25, 29-49.
16 Ahnert, F., 1977, Some comments on the quantitative formulation of geomorphological processes in a theoretical model, Earth Surface Processes, 2, 191-201.   DOI   ScienceOn
17 Anderson, R. S. and Humphrey, N. F., 1989, Interaction of weathering and transport processes in the evolution of arid landscapes, in Quantitative Dynamic Stratigraphy, Cross, T. A. (ed), pp. 349-361, Prentice Hall.
18 Andrews, D. J. and Bucknam, R. C., 1987, Fitting Degradation of Shoreline Scarps by a Nonlinear Diffusion Model, Journal of Geophysical Research, 92(B12), 12857-12867.   DOI
19 Beaumont, C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active compressional orogens, in Thrust Tectonics, McClay, K. R. (ed), pp. 1-18, Chapman & Hall.
20 Beaumont, C., Kooi, H., and Willett, S., 2000, Coupled tectonic-surface process models with applications to rifted margins and collisional orogens, in Geomorphology and Global Tectonics, Summerfield, M. A. (ed), pp. 29-55, Wiley.
21 Bogaart, P. W., Tucker, G. E., and de Vries, J. J., 2003, Channel network morphology and sediment dynamics under alternating periglacial and temperate regimes: A numerical simulation study, Geomorphology, 54(3-4), 257-277.   DOI   ScienceOn
22 Braun, J. and Sambridge, M., 1997, Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Research, 9(1), 27-52.   DOI   ScienceOn
23 Braun, J., Heimsath, A. M., and Chappell, J., 2001, Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29(8), 683-686.   DOI   ScienceOn
24 Burbank, D. W. and Anderson, R. S., 2001, Tectonic geomorphology, Blackwell Science.
25 Kim, J. W., 1989, Introduction to the method of the functional geomorphology, Journal of Geography Education, 22, 15-27 (in Korean).
26 Heimsath, A. M., Fink, D., and Hancock, G. R., 2009, The 'humped' soil production function: Eroding Arnhem land, Australia, Earth Surface Processes and Landforms, 34(12), 1674-1684.   DOI   ScienceOn
27 Heimsath, A. M., Furbish, D. J., and Dietrich, W. E., 2005, The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology, 33(12), 949-952.   DOI   ScienceOn
28 Howard, A. D. and Kerby, G., 1983, Channel changes in badlands, Geological Society of America Bulletin, 94(6), 739-752.   DOI
29 Howard, A. D., 1994, A detachment-limited model of drainage basin evolution, Water Resources Research, 30(7), 2261-2285.   DOI   ScienceOn
30 Howard, A. D., Dietrich, W. E., and Seidl, M. A., 1994, Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research, 99(B7), 13971-13986.   DOI
31 Kim, J. W., 1993, The role and the function of the time in geomorphology, Journal of Geography Education, 30, 1-15 (in Korean).
32 Kim, J. Y., 2004, Controls over bedrock channel incision, Ph.D. Disseration, Glasgow University.
33 King, L. C., 1953, Canons of landscape evolution, Geological Society of America Bulletin, 64(7), 721-752.   DOI
34 Kirkby, M. J., 1971, Hillslope process-response models based on the continuity equation, in Slopes, form and process, Brunsden, D. (ed), pp. 15-30, London. Instititute of British Geographers.
35 Knighton, D., 1998, Fluvial forms and processes: A new perspective, Arnold.
36 Kooi, H. and Beaumont, C., 1994, Escarpment evolution on high-elevation rifted margins: insights derived from a surface processes model that combines diffusion, advection, and reaction, Journal of Geophysical Research, 99(B6), 12191-12209.   DOI
37 Koons, P. O., 1989, The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand, American Journal of Science, 289(9), 1041-1069.   DOI
38 Martin, Y. and Church, M., 1997, Diffusion in landscape development models: On the nature of basic transport relations, Earth Surface Processes and Landforms, 22(3), 273-279.   DOI   ScienceOn
39 Koons, P. O., 1995, Modeling the topographic evolution of collisional belts, Annual Review of Earth & Planetary Sciences, 23, 375-408.   DOI   ScienceOn
40 Luo, W., Stravers, J. A., and Duffin, K. L., 2005, Lessons learned from using a Web-based Interactive Landform Simulation Model (WILSIM) in a general education physical geography course, Journal of Geoscience Education, 53(5), 489-493.   DOI
41 Martin, Y., 2000, Modelling hillslope evolution: linear and nonlinear transport relations, Geomorphology, 34, 1-21.   DOI
42 Minasny, B. and McBratney, A. B., 2001, A rudimentary mechanistic model for soil formation and landscape development: II. A two-dimensional model incorporating chemical weathering, Geoderma, 103(1-2), 161-179.   DOI   ScienceOn
43 Pazzaglia, F. J., 2003, Landscape evolution models, in The Quaternary Period in the United States, Gillespie, A. R., Porter, S. C. and Atwater, B. F. (eds), pp. 247-274, Elsevier, Amsterdam.
44 Pelletier, J. D. and Rasmussen, C., 2009, Geomorphically based predictive mapping of soil thickness in upland watersheds, Water Resources Research, 45, W09417, doi:10.1029/2008WR007319.
45 Roering, J. J., Kirchner, J. W., and Dietrich, W. E., 1999, Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resources Research, 35(3), 853-870.   DOI   ScienceOn
46 Penck, W., 1924, Die Morphologische Analyse: Ein Kapital der Physikalischen Geolgie, Von J. Engelhorns Nachf. Verlab, Stuttgart. (Translated by Czech, H. and Boswell, K. C., 1953, Morphological analysis of land forms: A contribution to physical Geology, MacMillan, London.)
47 Roering, J. J., 2004, Soil creep and convex-upward velocity profiles: Theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes, Earth Surface Processes and Landforms, 29(13), 1597-1612.   DOI   ScienceOn
48 Roering, J. J., 2008, How well can hillslope evolution models "explain" topography? Simulating soil transport and production with high-resolution topographic data, Bulletin of the Geological Society of America, 120(9-10), 1248-1262.   DOI   ScienceOn
49 van der Beek, P. and Bishop, P., 2003, Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test quantitative fluvial incision models, Journal of Geophysical Research B: Solid Earth, 108(6).
50 Ahnert, F., 1970, Functional relationships between denudation, relief, and uplift in large, midlatitude drainage basins, American Journal of Science, 268(3), 243-263.   DOI
51 van der Beek, P. and Braun, J., 1999, Controls on postmid-Cretaceous landscape evolution in the southeastern highlands of Australia: Insights from numerical surface process models, Journal of Geophysical Research B: Solid Earth, 104(B3), 4945-4966.   DOI
52 Whipple, K. X. and Tucker, G. E., 1999, Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research B: Solid Earth, 104(B8), 17661-17674.   DOI
53 Whipple, K. X., Hancock, G. S., and Anderson, R. S., 2000, River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Bulletin of the Geological Society of America, 112(3), 490-503.   DOI   ScienceOn
54 Whittow, J. B., 1984, The penguin dictionary of physical geography, Penguin Books.
55 Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I., 1991, A coupled channel network growth and hillslope evolution model, 1. Theory, Water Resources Research, 27(7), 1671-1684.   DOI
56 Wolman, M. G. and Miller, J. P., 1960, Magnitude and frequency of forces in geomorphic processes, Journal of Geology, 68(1), 54-74.   DOI
57 Woo, H., 2001, River hydraulics, Cheongmoongak (우효섭, 2001, 하천수리학, 청문각).
58 Seidl, M. A. and Dietrich, W. E., 1992, The problem of channel erosion into bedrock, in Functional Geomorphology, Schmidt, K. H. and Ploey, J. (eds), Catena Supplement, 23, 101-124.
59 Roering, J. J., Kirchner, J. W., Sklar, L. S., and Dietrich, W. E., 2001, Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29(2), 143-146.   DOI   ScienceOn
60 Schumm and Lichty, 1965, Time, space, and causality in geomorphology, American Journal of Science, 263, 110-119.   DOI
61 Seidl, M. A., Dietrich, W. E., and Kirchner, J. W., 1994, Longitudinal profile development into bedrock: an analysis of Hawaiian channels, Journal of Geology, 102(4), 457-474.   DOI   ScienceOn
62 Stock, J. and Montgomery, D. R., 1999, Geologic constrains on bedrock river incision using the stream power law, Journal of Geophysical Research, 104, 4983-4993.   DOI
63 Strahler, A. H. and Strahler, A. N., 1992, Modern physical geography (4th ed), Wiley.
64 Tucker, G. E. and Slingerland, R. L., 1996, Predicting sediment flux from fold and thrust belts, Basin Research, 8(3), 329-349.   DOI   ScienceOn
65 Strudley, M. W., Muray, A. B., and Haff, P. K., 2006, Regolith thickness instability and the formation of tors in arid environments, Journal of Geophysical Research F: Earth Surface, 111(3), F03010, doi:10.1029/2005JF000405.
66 Tucker, G. E. and Hancock, G. R., 2010, Modelling landscape evolution, Earth Surface Processes and Landforms, 35(1), 28-50.   DOI   ScienceOn
67 Tucker, G. E. and Slingerland, R. L., 1994, Erosional dynamics, flexural isostasy, and long-lived escarpments: a numerical modeling study, Journal of Geophysical Research, 99(B6), 12229-12243.   DOI
68 Tucker, G. E. and Slingerland, R. L., 1997, Drainage basin responses to climate change, Water Resources Research, 33(8), 2031-2047.   DOI   ScienceOn
69 Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R. L., 2001, The Channel-Hillslope Integrated Landscape Development Model (CHILD), in Landscape Erosion and Evolution Modelling, Harmon, R. S. and Doe III, W. W. (eds), pp. 349-388, Kluwer Academic/ Plenum Publishers.
70 van den Berg, J. H., 1995, Prediction of alluvial channel pattern of perennial rivers, Geomorphology, 12(4), 259-279.   DOI   ScienceOn