Browse > Article

An LNS-based Low-power/Small-area FFT Processor for OFDM Systems  

Park, Sang-Deok (CORERIVER Co., Ltd.)
Shin, Kyung-Wook (School of Electronic Eng., Kumoh National Institute of Technology)
Publication Information
Abstract
A low-power/small-area 128-point FFT processor is designed, which is based on logarithmic number system (LNS) and some design techniques to minimize both hardware complexity and arithmetic error. The complex-number multiplications and additions/subtractions for FFT computation are implemented with LNS adders and look-up table (LUT) rather than using conventional two's complement multipliers and adders. Our design reduces the gate counts by 21% and the memory size by 16% when compared to the conventional two's complement implementation. Also, the estimated power consumption is reduced by about 18%. The LNS-based FFT processor synthesized with 0.35 ${\mu}m$ CMOS standard cell library has 39,910 gates and 2,880 bits memory. It can compute a 128-point FIT in 2.13 ${\mu}s$ with 60 MHz@2.5V, and has the average SQNR of 40.7 dB.
Keywords
Fourier Transform; FFT; LNS (Logarithmic Number System); OFDM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Avizienis, 'Signed Digit Number Representation for Fast Parallel Arithmetic', IRE Trans. Electronic Computers. vol. 10, 389-400, Sep. 1961   DOI   ScienceOn
2 리우항, 이한호, 'MIMO-OFDM 시스템을 위한 고속 저면적 128/64-point Radix-$2^{4}$ FET 프로세서 설계' 전자공학회 논문지. 제46권, SD편, 2호, pp. 15-23. Feb. 2009
3 E.E. Jr.,Swartzlander, D.V. Satish Chandra, H.T. Nagle, S.A. Starks, 'Sign/Logarithm Arithmetic for FFT Implementation', IEEE Trans. on Computers, pp. 526-534, June 1983   DOI   ScienceOn
4 C. Huggett, K. Maharatna, K. Paul, 'On the Implementation of 128-pt FFT/IFFT for High-performance WPAN, IEEE ISCAS 2005, vol. 6, pp. 5513-5516, May, 2005   DOI
5 J. N. Mitchell, 'Computer Multiplication and Division Using Binary Logarithms', IRE Trans. Electronic Computer, vol. 11, 512-517, Aug. 1962   DOI   ScienceOn
6 H. A. Khalid, E. S. Raymong, 'CMOS VLSI Implementation of a Low-Power Logarithmic Converter', IEEE Trans. on Computers, vol. 52, no. 11, pp. 1421-1433, Nov. 2003   DOI   ScienceOn
7 조용수, '무선미디어 멀티미디어 통신을 위한 OFDM 기초', 대영사, 2001
8 H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, T. Sumi, 'Leading-Zero Anticipatory Logic for High-Speed Floating Point Addition', IEEE J. Solid-State Circuits, pp. 1157-1164, 1996   DOI   ScienceOn
9 H.L. Lin, H. Lin, Y.C. Chen, R.C. Chang, 'A Novel Pipelined Fast Fourier Transform Architecture for Double Rate OFDM Systems', IEEE SIPS 2004, pp. 7-11, 2004   DOI
10 김채현, 송유수, 김종환, 신경욱, '휴대형 3D 그래픽 가속기용 로그 수체계 기반의 누승기 설계', 대한전자공학회 하계학술대회 논문집, Jun. 2005
11 S.I. Cho, K.M. Kang, S.S. Choi, 'Implementation of 128-point Fast Fourier Transform Processor for UWB Systems' Int. Wireless Communications and Mobile Computing Conference(IWCMC'08). pp. 210- 213. Aug. 2008
12 Y. Wang, H.M. Lam, C.Y. Tsui, R.S. Cheng, W.H. Mow, 'Low complexity OFDM receiver using Log-FFT for coded OFDM system', IEEE ISCAS 2002, vol. 3, 445-448. 2002   DOI
13 T. Stouraitis and V. Paliouras, 'Considering the alternatives in low-power design', IEEE Circuit and Device Magazine, pp. 23-29, July, 2001   DOI   ScienceOn