Browse > Article

Microwave Characteristics Analysis of TWPD′s Using the FDTD Method  

Gong, Sun-Cheol (중앙대학교 광전자 광통신 연구실)
Lee, Seung-Jin (중앙대학교 광전자 광통신 연구실)
Lee, Jeong-Hun (중앙대학교 광전자 광통신 연구실)
Ok, Seong-Hae (중앙대학교 광전자 광통신 연구실)
Choe, Yeong-Wan (중앙대학교 광전자 광통신 연구실)
Publication Information
Abstract
In this paper, we present microwave characteristics of traveling-wave photodetectors (TWPD) using the finite-difference time-domain method (FDTD). Current and voltage in the time domain are calculated by the FDTD. Also, characteristic impedance and propagation constant in frequency domain are obtained from the time-domain data. As the thickness of i-layer gets thicker and the waveguide width gets narrower, TWPD's show less microwave loss and higher velocity. The 50Ω impedance matching design is achieved for 2.4${\mu}{\textrm}{m}$ waveguide width and 1.2${\mu}{\textrm}{m}$ thickness of i-layer at 100 GHz.
Keywords
TWPD; FDTD; Microwave-photonics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Wake, 'A 1550-nm millimeter-wave photodetector with a bandwidth-efficiency product of 2.4 THz,' J. Lightwave Technol., Vol. 10, pp. 908-912, July 1992   DOI   ScienceOn
2 K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, 'Traveling wave photodetectors,' IEEE Photon. Technol. Lett., Vol. 4, pp. 1363-1365, December 1992   DOI   ScienceOn
3 K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, 'Traveling-wave photodetector theory,' IEEE Trans. Microwave Theory Tech., Vol. 45, pp. 1310-1319, August 1997   DOI   ScienceOn
4 K. S. Yee, 'Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302-307, 1966   DOI   ScienceOn
5 A. Taflove and M. E. Brodwin, 'Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,' IEEE Trans. Microwave Theory Tech., Vol. MTT-23, pp. 623-630, 1975   DOI
6 S. C. Kong, S. H. Ok, J. H. Lee, S. J. Lee, Y. S. Yun, and Y. W. Choi, 'Analysis of bandwidth of traveling-wave photodetectors using the FDTD method,' The 2nd Korea-Japan Joint Workshop on Microwave-Photonics, pp. 157-160, Feb., 2001
7 Agilent Technologies Inc., Agilent HFSS 5.6. Palo Alto, CA : 2000
8 H. F. Taylor, O. Eknpyan, C. S. Park, K. N. Choi, and K. Chang, 'Traveling-wave photodetectors,' Proc. SPIE-Int. Soc. Opt. Eng., Vol. 1217, pp. 59-63, 1990
9 V. M. Hietala, G. A. Vawter, 'Traveling-wave photodetectors for high-power, large-bandwidth applications,' IEEE Trans. Microwave Theory Tech., Vol. 43, pp. 2291-2298, September 1995   DOI   ScienceOn
10 G. Mur, 'Absorbing boundary conditions for the finite-difference approximation of the timedomain electromagnetic field equations,' IEEE Trans. Electromagnetic Compatibility, Vol. EMC-23, pp. 377-381, 1981   DOI   ScienceOn
11 R. J. Deri, 'Monolithic integration of optical waveguide circuitry with photodetectors for advanced lightwave receivers,' J. Lightwave Technol., Vol. 11, pp. 1296-1313, Aug. 1993   DOI   ScienceOn
12 J. Soohoo, S. K. Yao, J. E. Miller, R. R. Shurtz, II, Y. Taur, and R. A. Gudrnundsen, 'A laser-induced traveling-wave device for generating millimeter waves,' IEEE Trans. Microwave Theory Tech., Vol. MTT-29, pp. 1174-1182, 1981