Browse > Article

An MMIC X-band Darlington-Cascade Amplifier  

Kim, Young-Gi (Dept. of Information and Communication, Anyang University)
Doo, Seok-Joo (Korea Army Academy)
Publication Information
Abstract
This paper describes a monolithic Darlington-cascade amplifier (DCA) operating at X-band, realized with a 0.35-micron SiGe bipolar process, which provides 45 GHz $f_T$. A conventional cascade amplifier was also designed on the same process and tested to establish a reference. Compared to the reference cascade amplifier, the proposed monolithic amplifier circuit exhibits an improved gain of 2.5 dB and improved output power 1-dB compression point of 5.2 dB with 72% wider bandwidth. Measurement results show 19.5 dB gain, 11.2 dBm 1-dB compression power, and 3.1 GHz bandwidth. These results demonstrate that the Darlington-cascade cell is an advantageous substitute to the conventional cascade amplifier.
Keywords
Cascade Amplifier; Darlington-cascade Amplifier; SiGe; HBT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Tsai, R. Kopf, R. Meledes, M. Meldes, A. Tate, R. Ryan, R. Hamm, and Y. K. Chen, '90 GHz baseband lumped amplifier,' Electronics Letters, vol. 36, no. 22, pp. 1833-1834, Oct. 2000   DOI   ScienceOn
2 Y. Suzuki, H. Shimawaki, Y. Amamiya, N. Nagano, T. Niwa, H. Yano and K. Honjo, '50-GHz-bandwidth baseband amplifiers using GaAs-based HBT's," IEEE J. Solid-State Circuits, vol. 33, Issue 8, pp. 1336-1341, Sep. 1998   DOI
3 K. W. Kobayashi, Y. C. Chen. I. Smorchkova, R. Tsai, M. Wojtowicz, and A. Oki, '1-watt conventional and cascoded GaN-SiC Darlington MMIC amplifiers to 18 GHz,' in Proc. 2007 IEEE Radio Frequency Integrated Circuits(RFIC), Jun. 2007, pp. 585-588   DOI
4 Y. J. Llano and A. H. Guardado, 'SiGe BiCMOS LNA meeting FCC part 15 ultra-wideband restrictions,' in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., 2004, pp. 183-186   DOI
5 D. Barras, F. Ellinger, H. Jackel, and W. Hirt, 'A low supply voltage SiGe LNA for ultra-wideband frontends,' IEEE Microwave and Guided Wave Letters, vol. 14, no. 10, pp. 469-471, Oct. 2004   DOI   ScienceOn
6 J. Chen, T. Yoshimasu, W. Hu, H. Liu, N. Itoh, and K. Yonemura, 'An Ultra-Wideband and Low-Power Amplifier Using 0.35-Om SiGe BiCMOS Technology,' in Proc. 2006 International Conference on Communications, Circuits and Systems, Jun. 2006, pp. 2614-2617
7 J. Andrews, J. D. Cressler, and M. Mitchell, 'A high-gain, two-stage, X-band SiGe power amplifier,' in IEEE MTT-S Microwave Symp. Dig., Jun. 2007, pp. 817 – 820   DOI
8 K. W. Kobayashi, 'A novel E-mode PHEMT linearized Darlington cascode amplifier,' in IEEE Comp. Semic. I.C. Symp., 2006, pp. 153-156
9 W. M. L. Kuo, Q. Liang, J. D. Cressler, and M. A. Mitchell, 'An X-band SiGe LNA with 1.36 dB mean noise figure for monolithic phased array transmit-receive radar modules,' in IEEE Radio Frequency Integrated Circuits. Symp. Dig., 2006, pp. 11-13
10 K. Nakajima, Y. Yoshida, H. Ueda, T. Nishino, H. Fukumoto, and N. Suematsu, 'X-band SiGe-MMIC low noise amplifier using low parasitic capacitance via holes for emitter grounding,' in Proc. 2007 IEEE Radio and Wireless Symposium, Jan. 2007, pp. 431-434   DOI
11 P. Roux, Y. Baeyens, J. Weiner, and Y. K. Chen, 'Ultra-low-power X-band SiGe HBT low-noise amplifiers,' in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1787-1790   DOI
12 J. S. Lee and J. D Cressler, 'Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,' IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 3, Mar. 2006
13 R. G. Meyer and R. A. Blauschild, 'A 4-terminal wide-band monolithic amplifier,' IEEE Journal of Solid-State Circuits, vol. 16, no. 6, pp. 634-638, Dec. 1981   DOI   ScienceOn
14 K. W. Kobayashi, R. Esfandiari, M. E. Hafizi, D. C. Streit, A. K. Oki, L. T. Tran, D. K. Umemoto, and M. E. Kim, 'GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz,' IEEE Trans. on Microwave Theory and Techniques, vol. 39, no. 12, pp. 2001-2009, Dec. 1991   DOI   ScienceOn
15 W.M. L. Kuo, R. Krithivasan, X. Li, Y. Lu, J. D. Cressler, H. Gustat, and B. Heinemann, 'A low-power, X-band SiGe HBT low-noise amplifier for near-space radar applications,' IEEE Microwave and Guided Wave Letters, vol. 6, no. 9, pp. 520-522, Sep. 2006
16 N. H. Sheng, W. J. Ho, N. L. Wang, R. L. Pierson, P. M. Asbeck, and W. L. Edwards, 'A 30 GHz bandwidth AlGaAs-GaAs HBT direct-coupled feedback amplifier,' IEEE Microwave and Guided Wave Letters, vol. 1, no. 8, pp. 208-210, Oct. 1991   DOI   ScienceOn
17 M. C. Chiang, S. S. Lu, C. C. Meng, S. A. Yu, S. C. Yang, and Y. J. Chan, "Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops," IEEE Journal of Solid-State Circuits, vol. 37, no. 6, pp. 694-701, Jun. 2002   DOI   ScienceOn
18 J. S. Lee, Y. G. Kim, E. J. Lee, C. W. Kim, and P. Roblin, 'A 8-GHz SiGe HBT VCO design on a low resistive silicon substrate using GSML,' IEEE Trans. Circuits and Systems-I, vol. 54, no. 10, pp. 2128-2136, Oct. 2007   DOI   ScienceOn