Browse > Article

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting Pierson-Moskowitz Surface Using a Monte-Carlo FDTD Technique  

최동묵 (경북대학교 전자전기컴퓨터학부)
김채영 (경북대학교 전자전기컴퓨터학부)
Publication Information
Abstract
In this paper, the scattered field from a Pierson-Moskowitz sea surface assumed as the PEC by the Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional surface used to analysis scattering was generated by using the Pierson-Moskowitz model. Back scattering coefficients are calculated with different values of the wind speed(U) which determine configuration of the Pierson-Moskowitz sea surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 50, 8192, and 128k, respectively. In order to verify the computed values these results are compared with those of small perturbation methods, which show good agreement between them.
Keywords
electromagnetic scattering; Pierson-Moskowitz surface; FDTD; Monte-Carlo method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Demarest, Z. Huang, R. Plumb, 'An FDTD near-to far-zone transformation for scatterers buried in stratified grounds,' IEEE Trans. Antennas and Propagat., vol. 44, no. 8, pp. 1150-1157 Aug. 1996   DOI   ScienceOn
2 R. M. Axline, and A. K. Fung, 'Numerical computation of scattering from a perfectly conducting random surface,' IEEE Trans. Antennas and Propagat., vol. 26, pp. 482-488, May 1978   DOI
3 T. Dogaru and L. Carin, 'Time-Domain sensing of targets buried under a rough air-ground interface,' IEEE Trans. Antennas and Propagat., vol. 46, no. 3, pp. 360-372, Mar. 1998   DOI   ScienceOn
4 A. W. Morgenthaler and C. M. Rappaport. 'Scattering from lossy dielectric objects buried beneath randomly rough ground : Validating the semi-analytic mode matching algorithm with 2-D FDTD,' IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 11, pp. 2421-2428, Nov. 2001   DOI   ScienceOn
5 R. Harrington, Field Computation by Moment Methods. New York : IEEE Press, 1993, Ch 3
6 최동묵, 김채영, '몬테칼로 모멘트방법을 이용한 1차원 프랙탈 완전도체 표면에서의 전자파 산란 해석', 대한전자공학회 논문지, 제39권 TC편 제12호, pp. 54-62, 2002년 12월   과학기술학회마을
7 N. Lin, H. P. Lee, S. P. Lim and K. S. Lee, 'Wave scattering from fractal surface,' J. of Modern Opt. 42, pp. 225-241, 1995   DOI   ScienceOn
8 E. I. Thorsos, 'The validity of the Kirchhoff approximation for the rough surface scattering using a Gaussian roughness spectrum,' J. Acoust. Soc. Am., vol. 83, no. 1, pp. 78-92, January 1989   DOI
9 E. I. Thorsos and D. R. Jackson, 'The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum,' J. Acoust. Soc. Am., vol. 86, no. 1, pp. 261-277, July, 1989   DOI
10 Allen Taflove, Computational Electrodynamics The Finite-Differenc Time-Domain Method : Artech House, U.S.A., pp. 51-226, 1995
11 J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, IOP Publishing pp. 1-117, 1991
12 E. I. Thorsos, 'Acoustic scattering from a Pierson-Moskowitz sea surface,' J. Acoust. Soc. Am, vol. 88, no. 1, pp. 335-349, July 1990   DOI