Browse > Article

(The Design of Parallel Ternary-Valued Multiplier Using Current Mode CMOS)  

Sim, Jae-Hwan (Dept.of Electronics Engineering, Inha University)
Byeon, Gi-Yeong (Dept.of Electronics Engineering, Inha University)
Yun, Byeong-Hui (Dept.of Electronics Engineering, Inha University)
Lee, Sang-Mok (Dept.of Electronics Engineering, Inha University)
Kim, Heung-Su (Dept.of Electronics Engineering, Inha University)
Publication Information
Abstract
In this paper, a new standard basis parallel ternary-valued multiplier circuit designed using current mode CMOS is presented. Prior to constructing the GF(3$^{m}$) multiplier circuit, we provide a GF(3) adder and a GF(3) multiplier with truth tables and symbolize them, and also design them using current mode CMOS circuit. Using the basic ternary operation concept, a ternary adder and a multiplier, we develop the equations to multiply arbitrary two elements over GF(3$^{m}$). Following these equations, we can design a multiplier generalized to GF(3$^{m}$). For the proposed circuit in this paper, we show the example in GF(3$^{3}$). In this paper, we assemble the operation blocks into a complete GF(3$^{m}$) multiplier. Therefore the proposed circuit is easy to generalize for m and advantageous for VLSI. Also, it need no memory element and the latency not less fewer than other circuit. We verify the proposed circuit by functional simulation and show its result.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. D. Mastrovito, 'VLSI Design for Multiplication over Finite Fields,' LNCS-357, Proc. AAECC-6, pp. 297-309, Rome, July 1988, Spring-Verlag
2 G. L. Feng, 'A VLSI Architecture for Fast Inversion in $GF(2^m)$,' IEEE Trans. Computer, vol. 38, no. 10, Oct. 1989   DOI   ScienceOn
3 C. K. Koc, and B. Sunar, 'Low-Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computer, vol. 47, no. 3, pp. 353-356, Mar. 1998   DOI   ScienceOn
4 J. T. Butler, 'Multiple-valued logic : guest editor's introduction and bibliography,' IEEE Computer, Mag., vol. 21, pp. 13-15, Apr. 1988   DOI
5 J. C. Muzio, 'Introduction multiple-valued logic,' IEEE Trans. Computer, vol. 35, pp. 97-98, Feb. 1986   DOI   ScienceOn
6 N. Kamiura, Y. Hata and K. Yamato, 'Design of a Multiple-Valued Cellular Array,' IEICE Trans. Electron., vol. E76-C, no. 3, pp. 412-418, Mar. 1993
7 T. Hanyu, S. Kazama, M. Kameyama, 'Design and implementation of a Low-Power Multipl-Valued Current Mode Integrated Circuit with Current-Souce Control,' IEICE Trans. Electron, vol. E80-C, no. 7, pp. 941-947, July 1997
8 A. Gill, Linear Sequential Circuits, McGraw-Hill Book Co., Newyork, 1966
9 H. Anton, Elementary Linear Algebra, John Wiley & Sons, Inc., Newyork, 1994
10 E. Kreyszig, Advanced Engineering Mathematics 8/e, John Wiley & Sons, Inc., Newyork, 1999
11 S. T. J. Fenn, M. Benaissa, and D. Taylor, '$GF(2^m)$ Multiplication and Division Over the Dual Basis,' IEEE Trans. Comp., vol. 45, no. 3, pp. 37-46, Jan. 1982
12 C. C. Wang, T. K. Trung, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed., 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Comp., vol. C-34, pp. 709-717, Aug. 1985   DOI   ScienceOn
13 I. S. Hsu, T. K. Troung, L. J. Deutsch, and I. S. Reed, 'A Comparision of VLSI Architecture of Multipliers using Dual, Normal, or Standard Bases,' IEEE Trans. Computer, vol. C-37, pp. 735-739, 1988   DOI   ScienceOn
14 B. A. Laws and C. K. Rushford, 'A Cellular-Array Multiplier for $GF(2^m)$' IEEE Trans. Comp., vol. C-20, no. 12, pp. 1573-1578, Dec. 1971   DOI   ScienceOn
15 C. S. Yeh, I. S. Reed, and T. K. Trung, 'Systolic multipliers for finite field $GF(2^m)$,' IEEE Trans. Computer, vol. C-33, p. 357-360, Apr. 1984   DOI   ScienceOn
16 J. Omura and J. Massey, 'Computational Method and Apparatus for Finite Fields,' U.S. Patent no. 4.587.627, May 1986
17 Y. Hata, N. Kamiura and K. Yamato, 'Design of Multiple-Valued Programmable Logic Array with Unary Function Generators,' IEICE Trans. INF. & SYST., vol. E82-D, no. 9, pp. 1254-1260, Sep. 1999
18 K. Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computer, vol. 48, no. 1, pp. 15-23, Jan. 1999   DOI   ScienceOn
19 C. Y. Lee, E. H. Lu, and J. Y. Lee, 'Bit-Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Comp., vol. 50, no. 5, pp. 385-393, May. 2001   DOI   ScienceOn
20 E. R. Berlekamp, 'Bit-Serial Reed-Solomon Encoders,' IEEE Trans. Information Theory, vol. 28, pp. 869-874, Nov. 1982   DOI   ScienceOn