Browse > Article
http://dx.doi.org/10.5115/acb.2010.43.3.241

Migratory defect of mesencephalic dopaminergic neurons in developing reeler mice  

Kang, Woo-Young (Department of Anatomy, School of Medicine, Ajou University)
Kim, Sung-Soo (Department of Anatomy, School of Medicine, Ajou University)
Cho, Sung-Kuk (Department of Anatomy, School of Medicine, Ajou University)
Kim, So-Yeon (Department of Anatomy, School of Medicine, Ajou University)
SuhKim, Hae-Young (Department of Anatomy, School of Medicine, Ajou University)
Lee, Young-Don (Department of Anatomy, School of Medicine, Ajou University)
Publication Information
Anatomy and Cell Biology / v.43, no.3, 2010 , pp. 241-251 More about this Journal
Abstract
Reelin, an extracellular glycoprotein has an important role in the proper migration and positioning of neurons during brain development. Lack of reelin causes not only disorganized lamination of the cerebral and cerebellar cortex but also malpositioning of mesencephalic dopaminergic (mDA) neurons. However, the accurate role of reelin in the migration and positioning of mDA neurons is not fully elucidated. In this study, reelin-deficient reeler mice exhibited a significant loss of mDA neurons in the substantia nigra pars compacta (SNc) and a severe alteration of cell distribution in the retrorubal field (RRF). This abnormality was also found in Dab1-deficinet, yotari mice. Stereological analysis revealed that total number of mDA neurons was not changed compared to wild type, suggesting that the loss of mDA neurons in reeler may not be due to the neurogenesis of mDA neurons. We also found that formation of PSA-NCAM-positive tangential nerve fibers rather than radial glial fibers was greatly reduced in the early developmental stage (E14.5) of reeler. These findings provide direct evidence that the alteration in distribution pattern of mDA neurons in the reeler mesencephalon mainly results from the defect of the lateral migration using tangential fibers as a scaffold.
Keywords
Reelin; dopaminergic neurons; radial glia; tangential fibers; neuronal migration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marin F, Herrero MT, Vyas S, Puelles L. (2005). Ontogeny of tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric pattern and novel positive regions. Dev Dyn 234: 709-717   DOI   ScienceOn
2 Forster E, Jossin Y, Zhao S, Chai X, Frotscher M, Goffinet AM. (2006). Recent progress in understanding the role of Reelin in radial neuronal migration, with specific emphasis on the dentate gyrus. Eur J Neurosci 23: 901-909   DOI   ScienceOn
3 Hunter-Schaedle KE. (1997). Radial glial cell development and transformation are disturbed in reeler forebrain. J Neurobiol 33: 459-472   DOI   ScienceOn
4 Nishikawa S, Goto S, Yamada K, Hamasaki T, Ushio Y. (2003). Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 461: 166-173   DOI   ScienceOn
5 Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22: 3161-3173
6 Ohkubo N, Lee YD, Morishima A, et al. (2002). Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J 17: 295-297
7 Ohyama K, Kawano H, Asou H, et al. (1998). Coordinate expression of L1 and 6B4 proteoglycan/phosphacan is correlated with the migration of mesencephalic dopaminergic neurons in mice. Brain Res Dev Brain Res 107: 219-226   DOI   ScienceOn
8 Paxinos G, Franklin KBJ. (2001) The mouse brain in stereotaxic coordinates. 2nd ed. San Diego, Academic Press
9 Prakash N, Wurst W. (2006). Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 63: 187-206   DOI   ScienceOn
10 Pollard SM, Conti L. (2007). Investigating radial glia in vitro. Prog Neurobiol 83: 53-67   DOI   ScienceOn
11 Rakic S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolic M. (2009). Cortical interneurons require p35/Cdk5 for their migration and laminar organization. Cereb Cortex 19: 1857-1869   DOI   ScienceOn
12 Kawano H, Ohyama K, Kawamura K, Nagatsu I. (1995). Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86: 101-113   DOI
13 Keilani S, Sugaya K. (2008). Reelin induces a radial glial phenotype in human neural progenitor cells by activation of Notch-1. BMC Dev Biol 8: 69   DOI   ScienceOn
14 Kojima T, Nakajima K, Mikoshiba K. (2000). The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75: 121-127   DOI
15 Kwon IS, Cho SK, Kim MJ, et al. (2009). Expression of disabled 1 suppresses astroglial differentiation in neural stem cells. Mol Cell Neurosci 40: 50-61   DOI   ScienceOn
16 Magdaleno S, Keshvara L, Curran T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron 33: 573-586   DOI   ScienceOn
17 Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152: 1024-1031   DOI   ScienceOn
18 Nishikawa S, Goto S, Hamasaki T, Ogawa M, Ushio Y. (1999). Transient and compartmental expression of the reeler gene product reelin in the developing rat striatum. Brain Res 850: 244-248   DOI   ScienceOn
19 Goffinet AM. (1983). The embryonic development of the inferior olivary complex in normal and reeler (rlORL) mutant mice. J Comp Neurol 219: 10-24   DOI   ScienceOn
20 Hack I, Bancila M, Loulier K, Carroll P, Cremer H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5: 939-945   DOI   ScienceOn
21 Hartfuss E, Forster E, Bock HH, et al. (2003). Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130: 4597-4609   DOI   ScienceOn
22 Hartfuss E, Galli R, Heins N, Gotz M. (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol 229: 15-30   DOI   ScienceOn
23 Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M. (1984). Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In Bjorklund A, Hokfelt T, eds. Handbook of Chemical Neuroanatomy, Vol. 2. Amsterdam, Elsevier, 277-379
24 Hu Z, Cooper M, Crockett DP, Zhou R. (2004). Differentiation of the midbrain dopaminergic pathways during mouse development. J Comp Neurol 476: 301-311   DOI   ScienceOn
25 Katsuyama Y, Terashima T. (2009). Developmental anatomy of reeler mutant mouse. Dev Growth Differ 51: 271-286   DOI   ScienceOn
26 Deller T, Drakew A, Frotscher M. (1999). Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice. Exp Neurol 156: 239-253   DOI   ScienceOn
27 Dulabon L, Olson EC, Taglienti MG, et al. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27: 33-44   DOI   ScienceOn
28 Feng L, Hatten ME, Heintz N. (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12: 895-908   DOI   ScienceOn
29 Gerfen CR. (1992). The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15: 285-320   DOI   ScienceOn
30 German DC, Manaye KF. (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331: 297-309   DOI   ScienceOn
31 Gilmore EC, Herrup K. (2000). Cortical development: receiving reelin. Curr Biol 10: R162-166   DOI   ScienceOn
32 Curran T, D'Arcangelo G. (1998). Role of reelin in the control of brain development. Brain Res Brain Res Rev 26: 285-294   DOI
33 D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24: 471-479   DOI   ScienceOn
34 D'Arcangelo G, Miao GG, Curran T. (1996). Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res 39: 234-236   DOI
35 Ballif BA, Arnaud L, Arthur WT, Guris D, Imamoto A, Cooper JA. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr Biol 14: 606-610   DOI   ScienceOn
36 Bjorklund A, Lindvall O. (1984) Dopamine-containing systems in the CNS. In Bjorklund A, Hokfelt T, eds. Handbook of Chemical Neuroanatomy, Vol. 2. Amsterdam, Elsevier, 55-121
37 Britanova O, Alifragis P, Junek S, Jones K, Gruss P, Tarabykin V. (2006). A novel mode of tangential migration of cortical projection neurons. Dev Biol 298: 299-311   DOI   ScienceOn
38 Weiss KH, Johanssen C, Tielsch A, et al. (2003). Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR-deficient mice. J Comp Neurol 460: 56-65   DOI   ScienceOn
39 Won SJ, Kim SH, Xie L, et al. (2006). Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198: 250-259   DOI   ScienceOn
40 Yip YP, Rinaman L, Capriotti C, Yip JW. (2003). Ectopic sympathetic preganglionic neurons maintain proper connectivity in the reeler mutant mouse. Neuroscience 118: 439-450   DOI   ScienceOn
41 Zhao S, Chai X, Frotscher M. (2007). Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci 29: 84-90   DOI   ScienceOn
42 Rice DS, Curran T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24: 1005-1039   DOI   ScienceOn
43 Rice DS, Sheldon M, D'Arcangelo G, Nakajima K, Goldowitz D, Curran T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125: 3719-3729
44 Shults CW, Hashimoto R, Brady RM, Gage FH. (1990). Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 38: 427-436   DOI   ScienceOn
45 Super H, Del Rio JA, Martinez A, Perez-Sust P, Soriano E. (2000). Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex10: 602-613   DOI   ScienceOn
46 Takaoka Y, Setsu T, Misaki K, Yamauchi T, Terashima T. (2005). Expression of reelin in the dorsal cochlear nucleus of the mouse. Brain Res Dev Brain Res 159: 127-134   DOI   ScienceOn
47 Terashima T, Kishimoto Y, Ochiishi T. (1994). Musculotopic organization in the motor trigeminal nucleus of the reeler mutant mouse. Brain Res 666: 31-42   DOI   ScienceOn