Browse > Article
http://dx.doi.org/10.5115/acb.2010.43.3.218

Changes in transcript and protein levels of calbindin D28k, calretinin and parvalbumin, and numbers of neuronal populations expressing these proteins in an ischemia model of rat retina  

Kim, Shin-Ae (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Jeon, Ji-Hyun (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Son, Min-Jeong (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Cha, Ji-Ook (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Chun, Myung-Hoon (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Kim, In-Beom (Department of Anatomy, College of Medicine, The Catholic University of Korea)
Publication Information
Anatomy and Cell Biology / v.43, no.3, 2010 , pp. 218-229 More about this Journal
Abstract
Excessive calcium is thought to be a critical step in various neurodegenerative processes including ischemia. Calbindin D28k (CB), calretinin (CR), and parvalbumin (PV), members of the EF-hand calcium-binding protein family, are thought to play a neuroprotective role in various pathologic conditions by serving as a buffer against excessive calcium. The expression of CB, PV and CR in the ischemic rat retina induced by increasing intraocular pressure was investigated at the transcript and protein levels, by means of the quantitative real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry. The transcript and protein levels of CB, which is strongly expressed in the horizontal cells in both normal and affected retinas, were not changed significantly and the number of CB-expressing horizontal cells remained unchanged throughout the experimental period 8 weeks after ischemia/reperfusion injury. At both the transcript and protein levels, however, CR, which is strongly expressed in several types of amacrine, ganglion, and displaced amacrine cells in both normal and affected retinas, was decreased. CR-expressing ganglion cell number was particularly decreased in ischemic retinas. Similar to the CR, PV transcript and protein levels, and PV-expressing AII amacrine cell number were decreased. Interestingly, in ischemic retinas PV was transiently expressed in putative cone bipolar cell types possibly those that connect with AII amacrine cells via gap junctions. These results suggest that these three calcium binding proteins may play different neuroprotective roles in ischemic insult by their ability to buffer calcium in the rat retina.
Keywords
Calbindin; calretinin; ischemia; parvalbumin; rat retina;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chun MH, Han SH, Chung JW, Wassle H. (1993). Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 332: 421-432   DOI   ScienceOn
2 D'Orlando C, Fellay B, Schwaller B, et al. (2001). Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909: 145-158   DOI   ScienceOn
3 Kim IB, Kim KY, Joo CK, et al. (1998). Reaction of Müller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121: 419-424   DOI   ScienceOn
4 Lee GA, Lin CH, Jiang HH, Chao HJ, Wu CL, Hsueh CM. (2004). Microglia-derived glial cell line-derived neurotrophic factor could protect Sprague-Dawley rat astrocyte from in vitro ischemia-induced damage. Neurosci Lett 356: 111-114   DOI   ScienceOn
5 Massey SC, Mills SL. (1999). Gap junctions between AII amacrine cells and calbindin-positive bipolar cells in the rabbit retina. Vis Neurosci 16: 1181-1189   DOI   ScienceOn
6 Rosenbaum D, Zabramski J, Frey J, et al. (1991). Early treatment of ischemic stroke with a calcium antagonist. Stroke 22: 437-441   DOI   ScienceOn
7 Lee JC, Hwang IK, Yoo KY, et al. (2005). Calbindin D-28k is expressed in the microvascular basal lamina in the ventral horn at early time after transient spinal cord ischemia in the rabbit. Brain Res 1047: 123-128   DOI   ScienceOn
8 Buchi ER. (1992b). Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res 55: 605-613   DOI   ScienceOn
9 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
10 Massey SC, Mills SL. (1996). A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J Comp Neurol 366: 15-33   DOI   ScienceOn
11 Hwang IK, Kang TC, Lee JC, et al. (2003). Chronological alterations of calbindin D-28k immunoreactivity in the gerbil main olfactory bulb after ischemic insult. Brain Res 971: 250-254   DOI   ScienceOn
12 Lewit-Bentley A, Rety S. (2000). EF-hand calcium-binding proteins. Curr Opin Struct Biol 10: 637-643   DOI   ScienceOn
13 Li SY, Fu ZJ, Ma H, et al. (2009). Effect of lutein on retinal neurons and oxidative stress in a model of acute retinal ischemia/reperfusion. Invest Ophthalmol Vis Sci 50: 836-843   DOI
14 Limburg M, Hijdra A. (1990). Flunarizine in acute ischemic stroke: a pilot study. Eur Neurol 30: 121-122   DOI   ScienceOn
15 Kristian T, Gido G, Kuroda S, Schutz A, Siesjo BK. (1998). Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Exp Brain Res 120: 503-509   DOI   ScienceOn
16 Kwon OJ, Kim JY, Kim SY, Jeon CJ. (2005). Alterations in the localization of calbindin D28K-, calretinin-, and parvalbumin-immunoreactive neurons of rabbit retinal ganglion cell layer from ischemia and reperfusion. Mol Cells 19: 382-390
17 Kageyama T, Ishikawa A, Tamai M. (2000). Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn J Ophthalmol 44: 110-114   DOI   ScienceOn
18 Kim KY, Ju WK, Neufeld AH. (2004). Neuronal susceptibility to damage: comparison of the retinas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol Aging 25: 491-500   DOI   ScienceOn
19 Kim SK, Cho KO, Kim SY. (2008). White matter damage and hippocampal neurodegeneration induced by permanent bilateral occlusion of common carotid artery in the rat: comparison between wistar and sprague-dawley strain. Korean J Physiol Pharmacol 12: 89-94   과학기술학회마을   DOI   ScienceOn
20 Heizmann CW, Braun K. (1992). Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15: 259-264   DOI   ScienceOn
21 Fan Y, Shi L, Gu Y, et al. (2007). Pretreatment with PTD-calbindin D 28k alleviates rat brain injury induced by ischemia and reperfusion. J Cereb Blood Flow Metab 27: 719-728   DOI
22 Joo CK, Choi JS, Ko HW, et al. (1999). Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci 40: 713-720
23 Dijk F, Kamphuis W. (2004). An immunocytochemical study on specific amacrine cell subpopulations in the rat retina after ischemia. Brain Res 1026: 205-217   DOI   ScienceOn
24 Dijk F, van Leeuwen S, Kamphuis W. (2004). Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Res 1026: 194-204   DOI   ScienceOn
25 Flagg-Newton J, Simpson I, Loewenstein WR. (1979). Permeability of the cell-to-cell membrane channels in mammalian cell juncton. Science 205: 404-407   DOI   ScienceOn
26 Wassle H, Grunert U, Rohrenbeck J. (1993). Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 332: 407-420   DOI   ScienceOn
27 Guo Q, Christakos S, Robinson N, Mattson MP. (1998). Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc Natl Acad Sci U S A 95: 3227-3232   DOI   ScienceOn
28 Chun MH, Kim IB, Ju WK, et al. (1999). Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci Lett 260: 125-128   DOI   ScienceOn
29 D'Orlando C, Celio MR, Schwaller B. (2002). Calretinin and calbindin D-28k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945: 181-190   DOI   ScienceOn
30 Celio MR, Baier W, Scharer L, Gregersen HJ, de Viragh PA, Norman AW. (1990). Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium 11: 599-602   DOI   ScienceOn
31 White BC, Sullivan JM, DeGracia DJ, et al. (2000). Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179: 1-33   DOI   ScienceOn
32 Xia XB, Mills SL. (2004). Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina. Vis Neurosci 21: 791-805   DOI
33 Buchi ER. (1992a). Cell death in rat retina after pressure-induced ischaemia-reperfusion insult: electron microscopic study. II. Outer nuclear layer. Jpn J Ophthalmol 36: 62-68
34 Choi DW. (1996). Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667-672   DOI   ScienceOn
35 Choi DW. (2001). Excitotoxicity, apoptosis and ischemic stroke. J Biochem Mol Biol 34: 8-14
36 Batini C, Palestini M, Thomasset M, Vigot R. (1993). Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids. Neuroreport 4: 927-930   DOI   ScienceOn
37 Ahmed BY, Toyoshima T, Yamagami S, et al. (1996). A chronological study of the expression of glial fibrillary acidic protein and calbindin-D28 k by reactive astrocytes in the electrically lesioned rat brain. Neurosci Res 26: 271-278   DOI   ScienceOn
38 Yenari MA, Minami M, Sun GH, et al. (2001). Calbindin d28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32: 1028-1035   DOI   ScienceOn
39 Sanna PP, Keyser KT, Battenberg E, Bloom FE. (1990). Parvalbumin immunoreactivity in the rat retina. Neurosci Lett 118: 136-139   DOI   ScienceOn
40 Buchi ER, Suivaizdis I, Fu J. (1991). Pressure-induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmologica 203: 138-147   DOI   ScienceOn
41 Azcona A, Lataste X. (1990). Isradipine in patients with acute ischaemic cerebral infarction. An overview of the ASCLEPIOS Programme. Drugs 40(Suppl 2): 52-57
42 Perlman JI, McCole SM, Pulluru P, Chang CJ, Lam TT, Tso MO. (1996). Disturbances in the distribution of neurotransmitters in the rat retina after ischemia. Curr Eye Res 15: 589-596   DOI   ScienceOn
43 Schafer BW, Heizmann CW. (1996). The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21: 134-140   DOI
44 Toyoshima T, Yamagami S, Ahmed BY, et al. (1996). Expression of calbindin-D28K by reactive astrocytes in gerbil hippocampus after ischaemia. Neuroreport 7: 2087-2091   DOI   ScienceOn
45 Vaney DI, Nelson JC, Pow DV. (1998). Neurotransmitter coupling through gap junctions in the retina. J Neurosci 18: 10594-10602
46 Rogers JH. (1987). Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343-1353   DOI   ScienceOn
47 Baimbridge KG, Celio MR, Rogers JH. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303-308   DOI   ScienceOn
48 Batini C, Guegan M, Palestini M, Thomasset M, Vigot R. (1997). Upregulation of Calbindin-D-28k immunoreactivity by excitatory amino acids. Arch Ital Biol 135: 385-397
49 Peterson GL. (1979). Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100: 201-220   DOI   ScienceOn
50 Polans A, Baehr W, Palczewski K. (1996). Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci 19: 547-554   DOI   ScienceOn
51 Meier TJ, Ho DY, Park TS, Sapolsky RM. (1998). Gene transfer of calbindin D28k cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. J Neurochem 71: 1013-1023
52 Pasteels B, Rogers J, Blachier F, Pochet R. (1990). Calbindin and calretinin localization in retina from different species. Vis Neurosci 5: 1-16   DOI   ScienceOn
53 Adachi K, Fujita Y, Morizane C, et al. (1998). Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eur J Pharmacol 350: 53-57   DOI   ScienceOn
54 Mojumder DK, Wensel TG, Frishman LJ. (2008). Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14: 1600-1613
55 Park HS, Park SJ, Park SH, Chun MH, Oh SJ. (2008). Shifting of parvalbumin expression in the rat retina in experimentally induced diabetes. Acta Neuropathol 115: 241-248   DOI   ScienceOn