Browse > Article
http://dx.doi.org/10.5115/acb.2010.43.3.201

Combined actions of $Na^+/K^+$-ATPase, $NCX_1$ and glutamate dependent NMDA receptors in ischemic rat brain penumbra  

Park, Sung-Jin (Department of Anatomy, College of Medicine, Dongguk University)
Jung, Yong-Wook (Department of Anatomy, College of Medicine, Dongguk University)
Publication Information
Anatomy and Cell Biology / v.43, no.3, 2010 , pp. 201-210 More about this Journal
Abstract
Instrumental role of $Na^+$ and $Ca^{2+}$ influx via $Na^+/K^+$ adenosine triphosphatase ($Na^+/K^+$-ATPase) and $Na^+/Ca^{2+}$ exchanger 1 (NCX1) is examined in the N-Methyl-D-aspartate (NMDA) receptor-mediated pathogenesis of penumbra after focal cerebral ischemia. An experimental model of 3, 6, and 24 h focal cerebral ischemia by permanent occlusion of middle cerebral artery was developed in rats. The changes in protein expression of $Na^+/K^+$-ATPase and NCX1 as well as functional subunits of NMDA receptor 2A and 2B (NR2A and NR2B) in the penumbra were assessed using by quantitative immunoblottings. The most prominent changes of $Na^+/K^+$-ATPase ($78{\pm}6%$, n=4, *P<0.05) and NCX1 ($144{\pm}2%$, n=4, *P<0.05) in the penumbra were developed 24 h after focal cerebral ischemia. The expression of NR2A in the penumbra was significantly increased ($153{\pm}9%$, n=4, *P<0.05) whereas the expression of NR2B was significantly decreased ($37{\pm}2%$, n=4, *P<0.05) as compared with sham-operated controls 3 h after focal cerebral ischemia. However, the expression of NR2A and NR2B in the penumbra was reversed 24 h after focal cerebral ischemia (NR2A: $40{\pm}7%$; NR2B: $120{\pm}16%$, n=4, *P<0.05). Moreover, the decreased expression of neuronal nuclei (NeuN) in the penumbra was most prominent than that of glial fibrillary acidic protein (GFAP) 24 h after focal cerebral ischemia. These findings imply that intracellular $Na^+$ accumulation via decreased $Na^+/K^+$-ATPase exacerbate the $Ca^{2+}$ overload cooperated by the increased NCX1 and NR2B-containing NMDA receptor which may play an important role in the pathogenesis of the penumbra.
Keywords
penumbra; $Na^+/K^+$-ATPase; NCX1; NMDA receptor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Silver IA, Deas J, Erecinska M. (1997). Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78: 589-601   DOI   ScienceOn
2 Czyz A, Baranauskas G, Kiedrowski L. (2002). Instrumental role of $Na^+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells. J Neurochem 81: 379-389   DOI   ScienceOn
3 MacDonald JF, Xiong ZG, Jackson MF. (2006). Paradox of $Ca^{2+}$ signaling, cell death and stroke. Trends Neurosci 29: 75-81   DOI   ScienceOn
4 Pignataro G, Tortiglione A, Scorziello A, et al. (2004). Evidence for a protective role played by the $Na^+/Ca^{2+}$ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46: 439-448   DOI   ScienceOn
5 Yu AC, Gregory GA, Chan PH. (1989). Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. J Cereb Blood Flow Metab 9: 20-28.   DOI
6 Martin RL, Lloyd HG, Cowan AI. (1994). The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17: 251-257   DOI   ScienceOn
7 Rumbaugh G, Vicini S. (1999). Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 19: 10603-10610.
8 Schroder UH, Breder J, Sabelhaus CF, Reymann KG. (1999). The novel $Na^+/Ca^{2+}$ exchange inhibitor KB-R7943 protects CA1 neurons in rat hippocampal slices against hypoxic/hypoglycemic injury. Neuropharmacology 38: 319-321   DOI   ScienceOn
9 Quednau BD, Nicoll DA, Philipson KD. (1997). Tissue specificity and alternative splicing of the $Na^+/Ca^{2+}$ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272: C1250-1261   DOI
10 Madl JE, Burgesser K. (1993). Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J Neurosci 13: 4429-4444
11 Matsuda T, Arakawa N, Takuma K, et al. (2001). SEA0400, a novel and selective inhibitor of the $Na^+-Ca^{2+}$ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298: 249-256
12 Lees GJ, Leong W. (1996). Interactions between excitotoxins and the $Na^+/K^+$-ATPase inhibitor ouabain in causing neuronal lesions in the rat hippocampus. Brain Res 714: 145-155   DOI   ScienceOn
13 Kiedrowski L. (1999). N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+). Mol Pharmacol 56: 619-632   DOI
14 Kiedrowski L. (2001). Repolarization of the plasma membrane shapes NMDA-induced cytosolic [Ca2+] transients. Neuroreport 12: 3579-3582   DOI   ScienceOn
15 Kolker S, Okun JG, Ahlemeyer B, et al. (2002). Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J Neurosci Res 68: 424-431   DOI   ScienceOn
16 Lipton SA, Rosenberg PA. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613-622   DOI   ScienceOn
17 Anderson CM, Swanson RA. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32: 1-14   DOI   ScienceOn
18 Ishii T, Moriyoshi K, Sugihara H, et al. (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836-2843
19 Boscia F, Gala R, Pignataro G, et al. (2006). Permanent focal brain ischemia induces isoform-dependent changes in the pattern of $Na^+/Ca^{2+}$ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 26: 502-517   DOI   ScienceOn
20 D'Ambrosio R, Gordon DS, Winn HR. (2002). Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 87: 87-102   DOI
21 Meguro H, Mori H, Araki K, et al. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70-74   DOI   ScienceOn
22 Stys PK, Waxman SG, Ransom BR. (1992). Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of $Na^+$ channels and $Na^+-Ca^{2+}$ exchanger. J Neurosci 12: 430-439
23 Tasker RC, Coyle JT, Vornov JJ. (1992). The regional vulnerability to hypoglycemia-induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK-801. J Neurosci 12: 4298-4308
24 Veldhuis WB, van der Stelt M, Delmas F, et al. (2003). In vivo excitotoxicity induced by ouabain, a $Na^+/K^+$-ATPase inhibitor. J Cereb Blood Flow Metab 23: 62-74   DOI
25 Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 20: 1149-1165   DOI
26 Storck T, Schulte S, Hofmann K, Stoffel W. (1992). Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89: 10955-10959   DOI   ScienceOn
27 Resink A, Villa M, Benke D, Hidaka H, Mohler H, Balazs R. (1996). Characterization of agonist-induced down-regulation of NMDA receptors in cerebellar granule cell cultures. J Neurochem 66: 369-377
28 Perkel DJ, Petrozzino JJ, Nicoll RA, Connor JA. (1993). The role of $Ca^{2+} entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 11: 817-823   DOI   ScienceOn
29 Monyer H, Sprengel R, Schoepfer R, et al. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217-1221.   DOI   ScienceOn
30 Mori H, Mishina M. (1995). Structure and function of the NMDA receptor channel. Neuropharmacology 34: 1219-1237   DOI   ScienceOn
31 Hasegawa Y, Fisher M, Latour LL, Dardzinski BJ, Sotak CH. (1994). MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia. Neurology 44: 1484-1490   DOI   ScienceOn
32 Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305: 99-103   DOI   ScienceOn
33 Fuller W, Parmar V, Eaton P, Bell JR, Shattock MJ. (2003). Cardiac ischemia causes inhibition of the $Na^+/K^+$ ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovasc Res 57: 1044-1051   DOI   ScienceOn
34 Gegelashvili G, Schousboe A. (1997). High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52: 6-15   DOI
35 Hansen AJ, Zeuthen T. (1981). Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol Scand 113: 437-445   DOI   ScienceOn
36 Hardingham GE, Fukunaga Y, Bading H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5: 405-414   DOI
37 Besancon E, Guo S, Lok J, Tymianski M, Lo EH. (2008). Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29: 268-275   DOI   ScienceOn
38 Beck T, Weber M, Horvath E, Wree A. (1996). Functional cerebral activity during regeneration from entorhinal lesions in the rat. J Cereb Blood Flow Metab 16: 342-352   DOI
39 Ben-Ari Y. (1990). Modulation of ATP sensitive $K^+$ channels: a novel strategy to reduce the deleterious effects of anoxia. Adv Exp Med Biol 268: 481-489
40 Benveniste H, Drejer J, Schousboe A, Diemer NH. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369-1374   DOI
41 Blaustein MP, Lederer WJ. (1999). Sodium/calcium exchange: its physiological implications. Physiol Rev 79: 763-854   DOI
42 Audinat E, Lambolez B, Rossier J, Crepel F. (1994). Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur J Neurosci 6: 1792-1800   DOI   ScienceOn