Browse > Article
http://dx.doi.org/10.5115/acb.2010.43.2.97

Re-engineering the mitochondrial genomes in mammalian cells  

Yoon, Young-Geol (Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University)
Koob, Michael D. (Institute of Human Genetics and Department of Laboratory Medicine and Pathology, University of Minnesota)
Yoo, Young-Hyun (Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University)
Publication Information
Anatomy and Cell Biology / v.43, no.2, 2010 , pp. 97-109 More about this Journal
Abstract
Mitochondria are subcellular organelles composed of two discrete membranes in the cytoplasm of eukaryotic cells. They have long been recognized as the generators of energy for the cell and also have been known to associate with several metabolic pathways that are crucial for cellular function. Mitochondria have their own genome, mitochondrial DNA (mtDNA), that is completely separated and independent from the much larger nuclear genome, and even have their own system for making proteins from the genes in this mtDNA genome. The human mtDNA is a small (~16.5 kb) circular DNA and defects in this genome can cause a wide range of inherited human diseases. Despite of the significant advances in discovering the mtDNA defects, however, there are currently no effective therapies for these clinically devastating diseases due to the lack of technology for introducing specific modifications into the mitochondrial genomes and for generating accurate mtDNA disease models. The ability to engineer the mitochondrial genomes would provide a powerful tool to create mutants with which many crucial experiments can be performed in the basic mammalian mitochondrial genetic studies as well as in the treatment of human mtDNA diseases. In this review we summarize the current approaches associated with the correction of mtDNA mutations in cells and describe our own efforts for introducing engineered mtDNA constructs into the mitochondria of living cells through bacterial conjugation.
Keywords
mtDNA delivery; mitochondrial targeting; lipophilic cations; bacterial conjugation; mitochondrial genome engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smith RA, Porteous CM, Gane AM, Murphy MP. (2003). Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100: 5407-5412   DOI   ScienceOn
2 Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. (2003). Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 278: 13712-13718   DOI   ScienceOn
3 Geromel V, Cao A, Briane D, et al. (2001). Mitochondria transfection by oligonucleotides containing a signal peptide and vectorized by cationic liposomes. Antisense Nucleic Acid Drug Dev 11: 175-180   DOI   ScienceOn
4 Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA. (1988). Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240: 1538-1541   DOI
5 Nass MM. (1970). Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci U S A 67: 1926-1933   DOI   ScienceOn
6 Nielsen PE, Egholm M, Berg RH, Buchardt O. (1991). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497-1500   DOI
7 Holt IJ, Harding AE, Morgan-Hughes JA. (1988). Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717-719   DOI   ScienceOn
8 Keeney PM, Quigley CK, Dunham LD, et al. (2009). Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 20: 897-907   DOI   ScienceOn
9 Khan SM, Bennett JP Jr. (2004). Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr 36: 387-393   DOI
10 Kim YG, Cha J, Chandrasegaran S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93: 1156-1160   DOI   ScienceOn
11 King MP, Attardi G. (1988). Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52: 811-819   DOI   ScienceOn
12 King MP, Attardi G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500-503   DOI
13 Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC. (2003). Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7: 550-557   DOI   ScienceOn
14 Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN. (2006). Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet 15: 143-154   DOI
15 Kunik T, Tzfi ra T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98: 1871-1876   DOI   ScienceOn
16 Epler JL, Shugart LR, Barnett WE. (1970). N-formylmethionyl transfer ribonucleic acid in mitochondria from Neurospora. Biochemistry 9: 3575-3579   DOI   ScienceOn
17 Fox TD, Sanford JC, McMullin TW. (1988). Plasmids can stably transform yeast mitochondria lacking endogenous mtDNA. Proc Natl Acad Sci U S A 85: 7288-7292   DOI   ScienceOn
18 Frey TG, Mannella CA. (2000). The internal structure of mitochondria. Trends Biochem Sci 25: 319-324   DOI   ScienceOn
19 Galper JB, Darnell JE. (1969). The presence of N-formylmethionyl-tRNA in HeLa cell mitochondria. Biochem Biophys Res Commun 34: 205-214   DOI   ScienceOn
20 Gray MW, Burger G, Lang BF. (1999). Mitochondrial evolution. Science 283: 1476-1481   DOI   ScienceOn
21 Green DR, Reed JC. (1998). Mitochondria and apoptosis. Science 281: 1309-1312   DOI   ScienceOn
22 Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16: 862-866   DOI   ScienceOn
23 Hashimoto K, Angiolillo P, Rottenberg H. (1984). Membrane potential and surface potential in mitochondria. Binding of a cationic spin probe. Biochim Biophys Acta 764: 55-62   DOI   ScienceOn
24 Heinemann JA, Sprague GF Jr. (1989). Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205-209   DOI   ScienceOn
25 Boddapati SV, Tongcharoensirikul P, Hanson RN, D'Souza GG, Torchilin VP, Weissig V. (2005). Mitochondriotropic liposomes. J Liposome Res 15: 49-58   DOI
26 Castellani R, Hirai K, Aliev G, et al. (2002). Role of mitochondrial dysfunction in Alzheimer's disease. J Neurosci Res 70: 357-360   DOI   ScienceOn
27 Chen LB, Summerhayes IC, Johnson LV, Walsh ML, Bernal SD, Lampidis TJ. (1982). Probing mitochondria in living cells with rhodamine 123. Cold Spring Harb Symp Quant Biol 46(Pt 1): 141-155   DOI   ScienceOn
28 Clark KM, Brown TA, Davidson MM, Papadopoulou LC, Clayton DA. (2002). Differences in nuclear gene expression between cells containing monomer and dimer mitochondrial genomes. Gene 286: 91-104   DOI   ScienceOn
29 Collombet JM, Wheeler VC, Vogel F, Coutelle C. (1997). Introduction of plasmid DNA into isolated mitochondria by electroporation. A novel approach toward gene correction for mitochondrial disorders. J Biol Chem 272: 5342-5347   DOI   ScienceOn
30 DiMauro S, Schon EA. (2001). Mitochondrial DNA mutations in human disease. Am J Med Genet 106: 18-26   DOI   ScienceOn
31 DiMauro S, Schon EA. (2003). Mitochondrial respiratorychain diseases. N Engl J Med 348: 2656-2668   DOI   ScienceOn
32 D'Souza GG, Boddapati SV, Weissig V. (2005). Mitochondrial leader sequence--plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5: 352-358   DOI   ScienceOn
33 D'Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. (2003). DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92: 189-197   DOI   ScienceOn
34 Edgar D, Shabalina I, Camara Y, et al. (2009). Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 10: 131-138   DOI   ScienceOn
35 Yoon YG, Koob MD. (2003). Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res 31: 1407-1415   DOI   ScienceOn
36 Alam TI, Kanki T, Muta T, et al. (2003). Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31: 1640-1645   DOI   ScienceOn
37 Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson GL. (2008). Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 15: 516-523   DOI   ScienceOn
38 Becker S, Th eile S, Heppeler N, et al. (2005). A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579: 1177-1182   DOI   ScienceOn
39 Weissig V, Torchilin VP. (2000). Mitochondriotropic cationic vesicles: a strategy towards mitochondrial gene therapy. Curr Pharm Biotechnol 1: 325-346   DOI   ScienceOn
40 Wu J, Kandavelou K, Chandrasegaran S. (2007). Customdesigned zinc fi nger nucleases: what is next? Cell Mol Life Sci 64: 2933-2944   DOI   ScienceOn
41 Yoon YG, Koob MD. (2005). Transformation of isolated mammalian mitochondria by bacterial conjugation. Nucleic Acids Res 33: e139   DOI   ScienceOn
42 Yoon YG, Koob MD. (2008). Selection by drug resistance proteins located in the mitochondria of mammalian cells. Mitochondrion 8: 345-351   DOI   ScienceOn
43 Yoon YG, Yang YW, Koob MD. (2009). PCR-based cloning of the complete mouse mitochondrial genome and stable engineering in Escherichia coli. Biotechnol Lett 31: 1671-1676   DOI   ScienceOn
44 Wallace DC. (2007). Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76: 781-821   DOI   ScienceOn
45 Waxman DJ, Strominger JL. (1983). Penicillin-binding proteins and the mechanism of action of ${\beta}$-lactam antibiotics. Annu Rev Biochem 52: 825-869   DOI   ScienceOn
46 Wallace DC, Singh G, Lott MT, et al. (1988). Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242: 1427-1430   DOI
47 Waters VL. (1999). Conjugative transfer in the dissemination of ${\beta}$-lactam and aminoglycoside resistance. Front Biosci 4: D433-456   DOI
48 Waters VL. (2001). Conjugation between bacterial and mammalian cells. Nat Genet 29: 375-376   DOI   ScienceOn
49 Weissig V, Cheng SM, D'Souza GG. (2004). Mitochondrial pharmaceutics. Mitochondrion 3: 229-244   DOI   ScienceOn
50 Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. (1998). DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15: 334-337   DOI   ScienceOn
51 Shoubridge EA. (2000). A debut for mito-mouse. Nat Genet 26: 132-134   DOI   ScienceOn
52 Tanaka M, Borgeld HJ, Zhang J, et al. (2002). Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9: 534-541
53 Sinai AP, Bavoil PM. (1993). Hyper-invasive mutants defi ne a novel Pho-regulated invasion pathway in Escherichia coli. Mol Microbiol 10: 1125-1137   DOI   ScienceOn
54 Srivastava S, Moraes CT. (2001). Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10: 3093-3099   DOI   ScienceOn
55 Sutton MD, Kaguni JM. (1997). Novel alleles of the Escherichia coli dnaA gene. J Mol Biol 271: 693-703   DOI   ScienceOn
56 Thorburn DR, Dahl HH. (2001). Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am J Med Genet 106: 102-114   DOI   ScienceOn
57 Trifunovic A, Wredenberg A, Falkenberg M, et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417-423   DOI   ScienceOn
58 Vestweber D, Schatz G. (1989). DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338: 170-172   DOI   ScienceOn
59 von Heijne G. (1986). Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335-1342
60 Wallace DC. (1999). Mitochondrial diseases in man and mouse. Science 283: 1482-1488   DOI   ScienceOn
61 Perkins GA, Sun MG, Frey TG. (2009). Correlated light and electron microscopy/electron tomography of mitochondria in situ. Methods Enzymol 456: 29-52   DOI   ScienceOn
62 Nishikawa M, Yoshida K. (1998). Trans-kingdom conjugation off ers a powerful gene targeting tool in yeast. Genet Anal 14: 65-73   DOI   ScienceOn
63 Panov AV, Gutekunst CA, Leavitt BR, et al. (2002). Early mitochondrial calcium defects in Huntington's disease are a direct eff ect of polyglutamines. Nat Neurosci 5: 731-736   DOI
64 Parisi MA, Clayton DA. (1991). Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252: 965-969   DOI
65 Piers KL, Heath JD, Liang X, Stephens KM, Nester EW. (1996). Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93: 1613-1618   DOI   ScienceOn
66 Ross MF, Da Ros T, Blaikie FH, et al. (2006). Accumulation of lipophilic dications by mitochondria and cells. Biochem J 400: 199-208   DOI   ScienceOn
67 Rottenberg H. (1984). Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 81: 127-138   DOI
68 Saraste M. (1999). Oxidative phosphorylation at the fin de siecle. Science 283: 1488-1493   DOI   ScienceOn
69 Scheffler IE. (2001). Mitochondria make a come back. Adv Drug Deliv Rev 49: 3-26   DOI   ScienceOn
70 Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. (1995). Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23: 10-17   DOI   ScienceOn
71 Lee M, Choi JS, Choi MJ, Pak YK, Rhee BD, Ko KS. (2007). DNA delivery to the mitochondria sites using mitochondrial leader peptide conjugated polyethylenimine. J Drug Target 15: 115-122   DOI   ScienceOn
72 Legros F, Lombes A, Frachon P, Rojo M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13: 4343-4354   DOI   ScienceOn
73 Lim YM, de Groof AJ, Bhattacharjee MK, Figurski DH, Schon EA. (2008). Bacterial conjugation in the cytoplasm of mouse cells. Infect Immun 76: 5110-5119   DOI   ScienceOn
74 Lu Y, Beavis AD. (1997). Effect of leader peptides on the permeability of mitochondria. J Biol Chem 272: 13555-13561   DOI
75 Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. (2008). Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36: 3926-3938   DOI   ScienceOn
76 Muratovska A, Lightowlers RN, Taylor RW, et al. (2001). Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease, Nucleic Acids Res 29: 1852-1863   DOI   ScienceOn