Browse > Article
http://dx.doi.org/10.5115/acb.2010.43.1.1

Genomics and proteomics in stem cell research: the road ahead  

Ahn, Sung-Min (LCDI-BRC Joint Genome Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Simpson, Richard (Joint Proteomics Laboratory, Ludwig Institute for Cancer Research & The Walter and Eliza Hall Institute of Medical Research, University of Melbourne)
Lee, Bong-Hee (Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
Publication Information
Anatomy and Cell Biology / v.43, no.1, 2010 , pp. 1-14 More about this Journal
Abstract
Stem cell research has been widely studied over the last few years and has attracted increasing attention from researchers in all fi elds of medicine due to its potential to treat many previously incurable diseases by replacing damaged cells or tissues. As illustrated by hematopoietic stem research, understanding stem cell differentiation at molecular levels is essential for both basic research and for clinical applications of stem cells. Although multiple integrative analyses, such as genomics, epigenomics, transcriptomics and proteomics, are required to understand stem cell biology, proteomics has a unique position in stem cell research. For example, several major breakthroughs in HSC research were due to the identifi cation of proteins such as colony-stimulating factors (CSFs) and cell-surface CD molecules. In 2007, the Human Proteome Organization (HUPO) and the International Society for Stem Cell Research (ISSCR) launched the joint Proteome Biology of Stem Cells Initiative. A systematic proteomics approach to understanding stem cell differentiation will shed new light on stem cell biology and accelerate clinical applications of stem cells.
Keywords
Stem cells; genomics; epigenomics; transcriptomics; proteomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Watt F, Molloy PL. (1988). Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2: 1136-1143   DOI   ScienceOn
2 Wu CC, MacCoss MJ, Howell KE , Yates JR 3rd. (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21: 532-538   DOI   ScienceOn
3 Yu L, Gaskell SJ, Brookman JL. (1998). Epitope mapping of monoclonal antibodies by mass spectrometry: identification of protein antigens in complex biological systems. J Am Soc Mass Spectrom 9: 208-215   DOI   ScienceOn
4 Schwartz BE, Ahmad K. (2005). Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19: 804-814   DOI   ScienceOn
5 Taverna SD, Ueberheide BM, Liu Y, et al. (2007). Longdistance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A 104: 2086-2091   DOI   ScienceOn
6 Elliott ST, Crider DG, Garnham CP, Boheler KR, Van Eyk JE. (2004). Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics 4: 3813-3832   DOI   ScienceOn
7 Unwin RD, Smith DL, Blinco D, et al. (2006). Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107: 4687-4694   DOI   ScienceOn
8 Levchenko A. (2005). Proteomics takes stem cell analyses to another level. Nat Biotechnol 23: 828-830   DOI   ScienceOn
9 Metcalf D. (1991). The Florey Lecture, 1991. The colonystimulating factors: discovery to clinical use. Philos Trans R Soc Lond B Biol Sci 333: 147-173   DOI   ScienceOn
10 Pesavento JJ, Kim YB, Taylor GK, Kelleher NL. (2004). Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 126: 3386-3387   DOI   ScienceOn
11 He L, He X, Lim LP, et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130-1134   DOI   ScienceOn
12 Hunt DF, Yates JR 3rd, Shabanowitz J, Winston S, Hauer CR. (1986). Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 83: 6233-6237   DOI   ScienceOn
13 Chambers I, Silva J, Colby D, et al. (2007). Nanog safeguards pluripotency and mediates germline development. Nature 450: 1230-1234   DOI   ScienceOn
14 Kang DJ, Oh SO, Ahn SM, Lee BH, Moon MH. (2008). Proteomic analysis of exosomes from human neural stem cells by fl ow fi eld-fl ow fractionation and nanofl ow liquid chromatography-tandem mass spectrometry. J Proteome Res 7: 3475-3480   DOI   ScienceOn
15 Black DL. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72: 291-336   DOI   ScienceOn
16 Bradley TR, Metcalf D. (1966). The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44: 287-299   DOI
17 Feinberg AP, Ohlsson R, Henikoff S. (2006). The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21-33   DOI   ScienceOn
18 Dou Y, Gorovsky MA. (2000). Phosphorylation of linker histone H1 regulates gene expression in vivo by creating a charge patch. Molecular Cell 6: 225-231   DOI   ScienceOn
19 Bentley GA, Boulot G, Chitarra V. (1994). Cross-reactivity in antibody-antigen interactions. Res Immunol 145: 45-48   DOI   ScienceOn
20 Elliott RL, Blobe GC. (2005). Role of transforming growth factor Beta in human cancer. J Clin Oncol 23: 2078-2093   DOI   ScienceOn
21 Feldman N, Gerson A, Fang J, et al. (2006). G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8: 188-194   DOI   ScienceOn
22 Fischle W, Wang Y, Allis CD. (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475-479   DOI   ScienceOn
23 Fortunel NO, Otu HH, Ng HH, et al. (2003). Comment on " 'Stemness': transcriptional profiling of embryonic and adult stem cells" and "a stem cell molecular signature". Science 302: 393
24 Gandhi TK, Zhong J, Mathivanan S, et al. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38: 285-293   DOI   ScienceOn
25 Blanchette M, Bataille AR, Chen X, et al. (2006). Genomewide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 16; 656-668   DOI   ScienceOn
26 Boyer LA, Lee TI, Cole MF, et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956   DOI   ScienceOn
27 Chang HY, Th omson JA, Chen X. (2006) Microarray analysis of stem cells and differentiation. Methods Enzymol 420: 225-254   DOI
28 Burns CE, Zon LI. (2002). Portrait of a stem cell. Dev Cell 3: 612-613   DOI   ScienceOn
29 Byrne JA, Pedersen DA, Clepper LL, et al. (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497-502   DOI   ScienceOn
30 Cai J, Weiss ML, Rao MS. (2004). In search of "stemness". Exp Hematol 32: 585-598   DOI   ScienceOn
31 Chen CZ, Li L, Lodish HF, Bartel DP. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83-86   DOI   ScienceOn
32 Cheng LC, Tavazoie M, Doetsch F. (2005). Stem cells: from epigenetics to microRNAs. Neuron 46: 363-367   DOI   ScienceOn
33 Clarke MF, Fuller M. (2006). Stem cells and cancer: two faces of eve. Cell 124: 1111-1115   DOI   ScienceOn
34 Cui Q, Yu Z, Purisima EO, Wang E. (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2: 46
35 Davidson EH. (2006). Th e regulatory genome: gene regulatory networks in development and evolution, New edn (Oxford Boston, Elsevier / Academic Press)
36 Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126-140   DOI   ScienceOn
37 Bartel DP, Chen CZ. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5: 396-400
38 Baba M, Hasegawa H, Nakayabu M, et al. (1995). Establishment and characteristics of a gastric cancer cell line (HuGC-OOHIRA) producing high levels of G-CSF, GM-CSF, and IL-6: the presence of autocrine growth control by G-CSF. Am J Hematol 49: 207-215   DOI   ScienceOn
39 Bannister AJ, Zegerman P, Partridge JF, et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120-124   DOI   ScienceOn
40 Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297   DOI   ScienceOn
41 Baudino TA, Cleveland JL. (2001). The Max network gone mad. Mol Cell Biol 21: 691-702   DOI   ScienceOn
42 Bernstein BE, Mikkelsen TS, Xie X, et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315-326   DOI   ScienceOn
43 Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463: 1042-1047   DOI   ScienceOn
44 Bird A. (2002). DNA methylation patterns and epigenetic memory. Genes Development 16: 6-21   DOI   ScienceOn
45 Arney KL, Fisher AG. (2004). Epigenetic aspects of diff erentiation. J Cell Sci 117: 4355-4363   DOI   ScienceOn
46 Agaton C, Galli J, Höidén Guthenberg I, et al. (2003). Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol Cell Proteomics 2: 405-414   DOI
47 Ahmad K, Henikoff S. (2002). Th e histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular cell 9: 1191-1200   DOI   ScienceOn
48 Alberts B. (2002). Molecular biology of the cell, 4th edn (New York, Garland Science)
49 Arrell DK, Niederlander NJ, Faustino RS, Behfar A, Terzic A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells 26: 387-400   DOI   ScienceOn
50 Wienholds E, Plasterk RH. (2005). MicroRNA function in animal development. FEBS Lett 579: 5911-5922   DOI   ScienceOn
51 Wissmuller S, Kosian T, Wolf M, Finzsch M, Wegner M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res 34: 1735-1744   DOI   ScienceOn
52 Woolfson A, Ellmark P, Chrisp JS, A Scott M, Christopherson RI. (2006). Th e application of CD antigen proteomics to pharmacogenomics. Pharmacogenomics 7: 759-771   DOI   ScienceOn
53 Wu CC, Yates JR 3rd. (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21: 262-267.   DOI   ScienceOn
54 Xiao C, Calado DP, Galler G, et al. (2007). MiR-150 controls B cell diff erentiation by targeting the transcription factor c-Myb. Cell 131: 146-159   DOI   ScienceOn
55 Xu P, Guo M, Hay BA. (2004). MicroRNAs and the regulation of cell death. Trends Genet 20: 617-624   DOI   ScienceOn
56 Yoo AS, Greenwald I. (2005). LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310: 1330-1333   DOI   ScienceOn
57 Yu J, Vodyanik MA, Smuga-Otto K, et al. (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 318: 1917-1920   DOI   ScienceOn
58 Uhlen M, Bjorling E, Agaton C, et al. (2005). A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4: 1920-1932   DOI   ScienceOn
59 Zola H, Swart B, Nicholson I, et al. (2005). CD molecules 2005: human cell differentiation molecules. Blood 106: 3123-3126   DOI   ScienceOn
60 Zola H, Swart BW. (2003). Human leucocyte differentiation antigens. Trends Immunol 24: 353-354   DOI   ScienceOn
61 Uhlen M, Ponten F. (2005). Antibody-based proteomics for human tissue profi ling. Mol Cell Proteomics 4: 384-393   DOI   ScienceOn
62 Van Hoof D, Muñoz J, Braam SR, et al. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5: 214-226   DOI   ScienceOn
63 Vogel G. (2005). Cell biology. Ready or not? Human ES cells head toward the clinic. Science 308: 1534-1538   DOI   ScienceOn
64 Wade PA. (2001). Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20: 3166-3173   DOI   ScienceOn
65 Wallin E, von Heijne G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7: 1029-1038
66 Walsh C. (2006). Posttranslational modification of proteins: expanding nature's inventory (Englewood, Colo., Roberts and Co. Publishers)
67 Stolt CC, Rehberg S, Ader M, et al. (2002). Terminal diff erentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16: 165-170   DOI   ScienceOn
68 Wang ZX, Teh CH, Chan CM, et al. (2008). The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes Stem Cells 26: 2791-2799   DOI   ScienceOn
69 Wenick AS, Hobert O. (2004). Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specifi c gene battery in C. elegans. Dev Cell 6: 757-770   DOI   ScienceOn
70 Wienholds E, Kloosterman WP, Miska E, et al. (2005). MicroRNA expression in zebrafi sh embryonic development. Science 309: 310-311   DOI   ScienceOn
71 Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. (2005). Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26: 495-502
72 Takahashi K, Tanabe K, Ohnuki M, et al. (2007). Induction of pluripotent stem cells from adult human fi broblasts by defi ned factors. Cell 131: 861-872   DOI   ScienceOn
73 Takahashi K, Yamanaka S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defi ned factors. Cell 126: 663-676   DOI   ScienceOn
74 Tay YM, Tam WL, Ang YS, et al. (2008). MicroRNA-134 modulates the differentiation of mouse embryonic stem cells where it causes post-transcriptional attenuation of nanog and LRH1. Stem Cells 26: 17-29   DOI   ScienceOn
75 Russo VEA, Martienssen RA, Riggs AD. (1996). Epigenetic mechanisms of gene regulation (Plainview, N.Y., Cold Spring Harbor Laboratory Press)
76 Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. (2005). Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366: 2019-2025   DOI   ScienceOn
77 The ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306: 636-640   DOI   ScienceOn
78 Thomas CE, Kelleher NL, Mizzen CA. (2006). Mass spectrometric characterization of human histone H3: a bird's eye view. J Proteome Res 5: 240-247   DOI   ScienceOn
79 Sanosaka T, Namihira M, Nakashima K. (2009). Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics 4: 89-92   DOI   ScienceOn
80 Shalgi R, Lieber D, Oren M, Pilpel Y. (2007). Global and Local Architecture of the Mammalian microRNA-Transcription Factor Regulatory Network. PLoS Comput Biol 3: e131   DOI   ScienceOn
81 O'Shea JJ, Gadina M, Schreiber RD. (2002). Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl): S121-131   DOI
82 Sharan R, Ulitsky I, Shamir R. (2007). Network-based prediction of protein function. Mol Syst Biol 3: 88
83 Stark A, Brennecke J, Russell RB , Cohen SM. (2003). Identification of Drosophila MicroRNA targets. PLoS Biol 1: E60   DOI   ScienceOn
84 Stein LD. (2004). Human genome: end of the beginning. Nature 431: 915-916   DOI   ScienceOn
85 Pardal R, Clarke MF, Morrison SJ. (2003). Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3: 895-902   DOI   ScienceOn
86 Pasquinelli AE, Hunter S, Bracht J. (2005). MicroRNAs: a developing story. Curr Opin Genet Dev 15: 200-205   DOI   ScienceOn
87 Plasterk RH. (2006). Micro RNAs in animal development. Cell 124: 877-881   DOI   ScienceOn
88 Poy MN, Eliasson L, Krutzfeldt J, et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230   DOI   ScienceOn
89 Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447: 425-432   DOI   ScienceOn
90 Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. (2002). "Stemness": transcriptional profi ling of embryonic and adult stem cells. Science 298: 597-600   DOI   ScienceOn
91 Reinders J, Sickmann A. (2005). State-of-the-art in phosphoproteomics. Proteomics 5: 4052-4061   DOI   ScienceOn
92 Rubio D, Garcia-Castro J, Martín MC, et al. (2005). Spontaneous human adult stem cell transformation. Cancer Res 65: 3035-3039   DOI
93 Mattick JS, Makunin IV. (2006). Non-coding RNA. Hum Mol Genet 15 Spec No 1: R17-29   DOI   ScienceOn
94 Nichols J, Zevnik B, Anastassiadis K, et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379-391   DOI   ScienceOn
95 Lee JH, Hart SRL, Skalnik DG. (2004). Histone deacetylase activity is required for embryonic stem cell diff erentiation. Genesis 38: 32-38   DOI   ScienceOn
96 Nightingale KP, O'Neill LP, Turner BM. (2006). Histone modifi cations: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16: 125-136   DOI   ScienceOn
97 Nomura H, Imazeki I, Oheda M, et al. (1986). Purification and characterization of human granulocyte colonystimulating factor (G-CSF). EMBO J 5: 871-876
98 Ong SE, Mittler G, Mann M. (2004). Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1: 119-126   DOI   ScienceOn
99 Lim LP, Lau NC, Garrett-Engele P, et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769-773   DOI   ScienceOn
100 Liu C, Zhao X. (2009). MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med 11: 141-152   DOI   ScienceOn
101 Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260   DOI   ScienceOn
102 Marx J. (2003). Cancer research. Mutant stem cells may seed cancer. Science 301: 1308-1310   DOI   ScienceOn
103 Luzi E, Marini F, Carbonell SS, Tognarini I, Galli G, Brandi ML. (2008). Osteogenic diff erentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting the SMAD1 transcription factor. J Bone Miner Res 23: 287-295
104 Maitra A, Arking DE, Shivapurkar N, et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nat Genet 37: 1099-1103   DOI   ScienceOn
105 Margueron R, Trojer P, Reinberg D. (2005). The key to development: interpreting the histone code? Curr Opin Genet Dev 15: 163-176   DOI   ScienceOn
106 Judson RL, Babiarz JE, Venere M, Blelloch R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27: 459-461   DOI   ScienceOn
107 Kang YK, Koo DB, Park JS, et al. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28: 173-177   DOI   ScienceOn
108 Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG. (2006). Proteomic identifi cation of the wt-p53-regulated tumor cell secretome. Oncogene 25: 7650-7661   DOI   ScienceOn
109 Kim J, Lo L, Dormand E, Anderson DJ. (2003). SOX10 maintains multipotency and inhibits neuronal diff erentiation of neural crest stem cells. Neuron 38: 17-31   DOI   ScienceOn
110 Kim H, Hahn M, Grabowski P, et al. (2006). The Bacillus subtilis spore coat protein interaction network. Mol Microbiol 59: 487-502,   DOI   ScienceOn
111 Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP. (2005). DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19: 667-678   DOI   ScienceOn
112 Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. (2005). Mechanism of divergent growth factor eff ects in mesenchymal stem cell diff erentiation. Science 308: 1472-1477   DOI   ScienceOn
113 Krijgsveld J, Whetton AD, Lee BH, et al. (2008). Proteome biology of stem cells: a new joint HUPO and ISSCR initiative. Mol Cell Proteomics 7: 204-205   DOI
114 Krishna RG, Wold F. (1993). Post-translational modifi cation of proteins. Adv Enzymol Relat Areas Mol Biol 67: 265-298
115 Garcia BA, Pesavento JJ, Mizzen CA, Kelleher NL. (2007). Pervasive combinatorial modification of histone H3 in human cells. Nat Methods 4: 487-489   DOI   ScienceOn
116 Gasson JC, Weisbart RH, Kaufman SE, et al. (1984). Purifi ed human granulocyte-macrophage colony-stimulating factor: direct action on neutrophils. Science 226: 1339-1342   DOI
117 Heck AJ, Mummery C, Whetton AD, et al. (2007). Proteome biology of stem cells. Stem Cell Res 1: 7-8   DOI   ScienceOn
118 Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. (2002). A stem cell molecular signature. Science 298: 601-604   DOI   ScienceOn
119 Hopkins AL, Groom CR. (2002). Th e druggable genome. Nat Rev Drug Discov 1: 727-730   DOI   ScienceOn
120 Howard ML, Davidson EH. (2004). cis-Regulatory control circuits in development. Dev Biol 271: 109-118   DOI   ScienceOn
121 Jacobs JM, Waters KM, Kathmann LE, et al. (2008). The mammary epithelial cell secretome and its regulation by signal transduction pathways. J Proteome Res 7: 558-569   DOI   ScienceOn
122 Jenuwein T, Allis CD. (2001). Translating the histone code. Science 293: 1074-1080   DOI   ScienceOn
123 Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O. (2005). MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A 102: 12449-12454   DOI   ScienceOn
124 Jones PA, Takai D. (2001). The role of DNA methylation in mammalian epigenetics. Science 293: 1068-1070   DOI   ScienceOn
125 Dover J, Schneider J, Tawiah-Boateng MA, et al. (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277: 28368-28371   DOI   ScienceOn
126 Draper JS, Smith K, Gokhale P, et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22: 53-54   DOI   ScienceOn
127 Edman P. (1960). Phenylthiohydantoins in protein analysis. Ann N Y Acad Sci 88: 602-610