Browse > Article
http://dx.doi.org/10.7470/jkst.2017.35.2.091

Modeling Domestic Transportation Sector Using Global Change Assessment Model  

JEON, Seungho (Energy System Department, Ajou University)
KIM, Suduk (Energy System Department, Ajou University)
Publication Information
Journal of Korean Society of Transportation / v.35, no.2, 2017 , pp. 91-104 More about this Journal
Abstract
In this study, we discuss the modeling of domestic transport sector using GCAM(Global Change Assessment Model). The GCAM is one of integrated assessment models widely used in internationally modeling community, and applied for the evaluation of IPCC 5th Report. Nevertheless, it is noted that there are a considerable number of problems in its application to domestic transport sector. First, the base year information of GCAM for detailed transportation service demand is found not consistent with national statistics. Second, the transportation sector simulation results do not properly reflect the past trends of service demand. Thus, the base year service demand is carefully matched with the detailed national statistics. In addition, the existing models were checked and modified so that the simulation results of service demand can accurately reflect past trends of national statistics. As a result, it is reported in detail how the current GCAM simulation results are corrected and how the trend of past transportation sector service demands is properly reflected. This study is expected to be useful as a basic tool for future scenario analysis for transportation policy, technology evaluation and greenhouse gas reduction measures.
Keywords
fuel efficiency; GCAM; integrated assessment model; load factor; transportation sector; transportation service demand;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Moss R. H., Edmonds J., Hibbard K. A., Manning M. R., Rose S. K., Van Vuuren D. P., Meehl G. A. (2010), The Next Generation of Scenarios for Climate Change Research and Assessment, Nature, 463(7282), 747-756.   DOI
2 NIER (2011), http://webbook.me.go.kr/DLi-File/NIER/06/013/5511438.pdf [Accessed: Feb.09,2017]
3 O'Shea W., Mueller S., Caldwell I., Lin J. (2016), Evaluation of the USEPA MOVES Model Sensitivity to Ethanol Fuel Blends: A Case Study in Cook County, Illinois, In Transportation Research Board 95th Annual Meeting (No.16-4146).
4 OECD, Transport data, https://data.oecd.org/transport/passenger-transport.htm [Accessed: Feb.09,2017]
5 OmniTRANS, OmniTRANS 8.0, http://www.dat.nl/en/products/omnitrans/80/ [Accessed: Feb.09,2017]
6 Paltsev S., Reilly J. M., Jacoby H. D., Eckaus R. S., McFarland J. R., Sarofim M. C., Babiker M. H. (2005), The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4, MIT Joint Program on the Science and Policy of Global Change.
7 Paltsev S., Viguier L., Babiker M., Reilly J., Tay K. H. (2004), Disaggregating Household Transport in the MIT-EPPA Model, MIT Joint Program on the Science and Policy of Global Change, Technical Note, 5.
8 Park S., Lee J. (2016), Evaluation of Fuel Consumption Models for Eco-friendly Traffic Operations Strategies, J. Korean Soc. Transp., 34(3), Korean Society of Transportation, 234-247.   DOI
9 Pietzcker R., Moll R., Bauer N., Luderer G. (2010, August), Vehicle Technologies and Shifts in Modal Split as Mitigation Options Towards a 2 C Climate Target, In Contribution to the 2010 ISEE Conference, Advancing Sustainability in a Time of Crisis, 22-25.
10 PIK, REMIND, https://www.pik-potsdam.de/research/sustainable-solutions/models/remind [Accessed: Feb.09,2017]
11 Rakha H., Ahn K., Trani A. (2004), Development of VT-Micro Model for Estimating Hot Stabilized Light Duty Vehicle and Truck Emissions, Transportation Research Part D: Transport and Environment, 9(1), 49-74.   DOI
12 Riahi K., Grübler A., Nakicenovic N. (2007), Scenarios of Long-term Socio-economic and Environmental Development Under Climate Stabilization, Technological Forecasting and Social Change, 74(7), 887-935.   DOI
13 Sarica K., Tyner W. E. (2013), Analysis of US Renewable Fuels Policies Using a Modified MARKAL Model, Renewable Energy 50, 701-709.   DOI
14 Scora G., Barth M. (2006), Comprehensive Modal Emissions Model(CMEM), Version 3.01 User Guide, Centre for Environmental Research and Technology, University of California, Riverside.
15 Sassi O., Crassous R., Hourcade J. C., Gitz V., Waisman H., Guivarch C. (2009), IMACLIM-R: A Modelling Framework to Simulate Sustainable Development Pathways, International Journal of Global Environmental Issues, 10(1-2), 5-24.
16 Schaefer A., Jacoby H. D. (2005), Technology Detail in a Multisector CGE Model: Transport Under Climate Policy, Energy Economics, 27(1), 1-24.   DOI
17 Schipper L., Scholl L., Price L. (1997), Energy Use and Carbon Emissions From Freight in 10 Industrialized Countries: An Analysis of Trends From 1973 to 1992, Transportation Research Part D, Transport and Environment, 2(1), 57-76.   DOI
18 Baek M., Oh J., Kim S. (2015), Analyzing the Long-Term Impact of Energy Efficiency Improvement Programs on Large Commercial Buildings Using GCAM-EML, Korean Energy Economic Review, 53(1), 33-67.
19 AIM, Asia-Pacific Integrated Model, http://www-iam.nies.go.jp/aim/ [Accessed: Feb.09,2017]
20 Azhaginiyal A., Umadevi G. (2014), System Dynamics Simulation Modeling of Transport, Energy and Emissions Interactions, Civil Engineering and Architecture, 2(4), 149-165.   DOI
21 Bosetti V., Longden T. (2013), Light Duty Vehicle Transportation and Global Climate Policy: The Importance of Electric Drive Vehicles, Energy Policy, 58, 209-219.   DOI
22 Baek M., Rho M., Yurnaidi Z., Kim S. (2016), Abatement Potentials of Power Generation Technologies for the Achievement of National INDC, Environmental and Resource Economic Review, 25(4), 565-590.
23 Blanford G. J., Richels R. G., Rutherford T. F. (2009), Feasible Climate Targets: The Roles of Economic Growth, Coalition Development and Expectations, Energy Economics, 31, S82-S93.   DOI
24 Bosetti V., Catenacci M., Fiorese G., Verdolini E. (2012), The Future Prospect of PV and CSP Solar Technologies: An Expert Clicitation Survey, Energy Policy, 49, 308-317.   DOI
25 Brenkert A., Smith S., Kim S., Pitcher H. (2003), Model Documentation for the MiniCAM, Pacific Northwest National Laboratory Richland, WA.
26 Chung S.H., Kang K.W. (2015), A Comparative Study on the Forecasting Accuracy of Econometric Models: Domestic Total Freight Volume in South Korea, J. Korean Soc. Transp., 33(1), Korean Society of Transportation, 61-69.   DOI
27 Clarke J.F., Edmonds J.A. (1993), Modelling Energy Technologies in a Competitive Market, Energy Economics, 15(2), 123-129.   DOI
28 De Jong G., Gunn H., Walker W. (2004), National and International Freight Transport Models: An Overview and Ideas for Future Development, Transport Reviews, 24(1), 103-124.   DOI
29 De Vries, B., van Vuuren, D., Den Elzen, M., Janssen, M. (2002), Targets IMage Energy Regional (TIMER) Model, Technical Documentation.
30 Ebi K. L., Hallegatte S., Kram T., Arnell N. W., Carter T. R., Edmonds J., Winkler H. (2014), A New Scenario Framework for Climate Change Research: Background, Process, and Future Directions, Climatic Change, 122(3), 363-372.   DOI
31 Edmonds J., Clarke J., Dooley J., Kim S. H., Smith S. J. (2004), Stabilization of CO 2 in a B2 World: Insights on the Roles of Carbon Capture and Disposal, Hydrogen, and Transportation Technologies, Energy Economics, 26(4), 517-537.   DOI
32 Edmonds J., Reilly J. (1985), Global Energy: Assessing the Future (Oxford University Press, New York), 317.
33 Edmonds J., Wise M., Pitcher H., Richels R., Wigley T., MacCracken C. (1997), An Integrated Assessment of Climate Change and the Accelerated Introduction of Advanced Energy Technologies, Mitigation and Adaptation Strategies for Global Change, 1, 311-339.   DOI
34 Enerdata, POLES, https://www.enerdata.net/solutions/poles-model.html [Accessed: Feb.09,2017]
35 Eom J., Schipper L. (2010), Trends in Passenger Transport Energy Use in South Korea, Energy Policy, 38(7), 3598-3607.   DOI
36 Eom J., Schipper L., Thompson L. (2012), We keep on truckin': Trends in Freight Energy Use and Carbon Emissions in 11 IEA Countries, Energy Policy, 45, 327-341.   DOI
37 Fellendorf M., Vortisch P. (2010), Microscopic Traffic Flow Simulator VISSIM, Fundamentals of Traffic Simulation, Springer New York, 63-93.
38 GCAM, Global Change Assessment Model, http://www.globalchange.umd.edu/archived-models/gcam/, http://jgcri.github.io/gcam-doc/index.html [Accessed: Feb.09,2017]
39 Ginsburgh V., Keyzer M. (2002), The Structure of Applied General Equilibrium Models, MIT Press.
40 GIR (2015), National Greenhouse Gas Inventory Report of Korea, Greenhouse Gas Inventory & Research Center of Korea
41 Girod B., van Vuuren D. P., Deetman S. (2012), Global Travel Within the 2 C Climate Target, Energy Policy, 45, 152-166.   DOI
42 Girod B., van Vuuren D. P., Grahn M., Kitous A., Kim S. H., Kyle P. (2013), Climate Impact of Transportation a model Comparison, Climatic Change, 118(3-4), 595-608.   DOI
43 Greene H. W. (2003), Econometric Analysis, New Jersey: Prentice Hall.
44 Hillier B., Hanson J. (1989), The Social Logic of Space, Cambridge University Press.
45 Hu H., Yang C., Yoon C., Kim I., Sung J. (2015), Developing a Method for Estimating Urban Environmental Impact Using an Integrated Land Use-Transport Model, J. Korean Soc. Transp., 33(3), Korean Society of Transportation, 294-303.   DOI
46 IEA (2015), World energy balances, http://dx.doi.org/10.1787/data-00512-en, [Accessed: Feb.09,2017]   DOI
47 TS (Korea Transportation Safety Authority) (2011), 2010 Automobile Mileage Analysis (2010년도 자동차 주행거리 실태분석 연구), http://www.ts2020.kr/tsk/rck/InqDetPTRTrafficSafety.do?bbsSn=4280&bbsCd=110&ctgCd=-1.
48 Sims R., Schaeffer R., Creutzig F., Cruz-Nunez X., D'Agosto M., Dimitriu D., Figueroa Meza M. J., Fulton L., Kobayashi S., Lah O., McKinnon A., Newman P., Ouyang M., Schauer J. J., Sperling D., Tiwari G. (2014), Transport. In: Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlomer S., von Stechow C., Zwickel T., Minx J.C. (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
49 Sorrell S., Dimitropoulos J., Sommerville M. (2009), Empirical Estimates of the Direct Rebound Effect: A Review, Energy policy, 37(4), 1356-1371.   DOI
50 Stevanovic A., Stevanovic J., Zhang K., Batterman S. (2009), Optimizing Traffic Control to Reduce Fuel Consumption and Vehicular Emissions: Integrated Approach With VISSIM, CMEM, and VISGAOST, Transportation Research Record, Journal of the Transportation Research Board, (2128), 105-113.
51 Turton H. (2006), Sustainable Global Automobile Transport in the 21st Century: An Integrated Scenario Analysis, Technological Forecasting and Social Change, 73(6), 607-629.   DOI
52 Kamakate F., Schipper L. (2009), Trends in Truck Freight Energy Use and Carbon Emissions in Selected OECD Countries From 1973 to 2005, Energy Policy, 37(10), 3743-3751.   DOI
53 IIASA, MESSAGE, http://www.iiasa.ac.at/web/home/research/modelsData/MESSAGE/MESSAGE.en.html [Accessed: Feb.09,2017]
54 Jamshidnejad A., Papamichail I., Papageorgiou M., De Schutter B. (2017), A Mesoscopic Integrated Urban Traffic Flow-emission Model, Transportation Research Part C: Emerging Technologies, 75, 45-83.   DOI
55 Johansen L. (1960), A Multisectoral Study of Economic Growth (1ed.), Amsterdam: North-Holland.
56 Kaya H. K. (1990), Soil Ecology, Entomopathogenic Nematodes in Biological Control, 93-115.
57 KEEI (2012), 2011 Energy Consumption Survey (2011년도 에너지총조사 보고서), Korea Energy Economics Institute.
58 Uwe Remme, Markus Blesl, Anjana Das, Ulrich Fahl, Overview of the Application of TIMES at IER, http://iea-etsap.org/workshop/worksh7-7/ier-overviewapplictimes.pdf [Accessed: Feb.09,2017]
59 Turton H. (2008), ECLIPSE: An Integrated Energy-economy Model for Climate Policy and Scenario Analysis, Energy, 33(12), 1754-1769.   DOI
60 US EPA. (2014), Motor Vehicle Emission Simulator (MOVES) User Guide for MOVES2014.
61 van Vuuren D. P., Edmonds J. A., Kainuma M., Riahi K., Thomson A., Hibbard K., George C. H., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshause M., Nakicenovic N., Smith S. J., Rose S. K. (2011b), Special Issue, The Representative Concentration Pathways: An Overview, Climatic Change, 109(1-2).
62 van Vuuren D. P., Lowe J., Stehfest E., Gohar L., Hof A. F., Hope C., Plattner G. K. (2011a), How Well Do Integrated Assessment Models Simulate Climate Change?, Climatic Change, 104(2), 255-285.   DOI
63 Waisman H. D., Guivarch C., Lecocq F. (2013), The Transportation Sector and Low-carbon Growth Pathways: Modelling Urban, Infrastructure, and Spatial Determinants of Mobility, Climate Policy, 13, 106-129.   DOI
64 Wang H., Zhou P., Zhou D. Q. (2012), An Empirical Study of Direct Rebound Effect for Passenger Transport in Urban China, Energy Economics, 34(2), 452-460.   DOI
65 IEA (2016), Key world energy statistics, International Energy Agency
66 Kim S.H., Edmonds J., Lurz J., Smith S. J., Wise M. (2006), The Objects Framework for Integrated Assessment: Hybrid Modeling of Transportation, Energy Journal (Special Issue #2), 51-80.
67 KEEI (2015), Yearbook of Energy Statistics, Korea Energy Economics Institute.
68 Keepin B., Wynne B. (1984) Technical Analysis of IIASA Energy Scenarios, Nature 312, 691-695.   DOI
69 Kim H. J., Sung B. J. (2013), Development of CNG Hybrid City Bus, Journal of the Korean Society of Automotive Engineers 35(2), 18-23.
70 Kitous A., Criqui P., Bellevrat E., Chateau B. (2010), Transformation Patterns of the Worldwide Energy System-Scenarios for the Century With the POLES Model, The Energy Journal, 49-82.
71 KTDB (2015), 2014 Korea Transportation Statistics (2014 국가교통통계), Korea Transport Data Base.
72 Kyle P., Kim S. H. (2011), Long-Term Implications of Alternative Light-Duty Vehicle Technologies for Global Greenhouse Emissions and Primary Energy Demands, Energy Policy 39, 3012-3024.   DOI
73 Kypreos S., Glynn J., Panos E., Giannidakis G., O Gallachoir B., Energy, Climate Change and Local Atmospheric Pollution Scenarios Evaluated with the TIAM-MACRO Model, https://iea-etsap.org/projects/TIAM_Global_CC&LAPScenarios-8616.pdf [Accessed: Feb.09,2017]
74 Lee K. S., Chung S. B., Eom J. K., Namkung B. K., Kim S. W. (2015), Development of Mode Choice Model for the Implementation of Next-generation High Speed Train(HEMU-430X), J. Korean Soc. Transp., 33(5), Korean Society of Transportation, 461-469.   DOI
75 Lee K.J., Choi K. (2016), Mobile Source Emissions Estimates for Intra-Zonal Travel Using Space Syntax Analysis, J. Korean Soc. Transp., 34(2), Korean Society of Transportation, 107-122.   DOI
76 Mishra G.S., Kyle P., Teter J., Morrison G.M., Yeh S., Kim S. (2013), Transportation Module of Global Change Assessment Model (GCAM): Model Documentation Version 1.0, Institute of Transportation Studies, University of California at Davis and Pacific Northwest National Laboratory, Report UCD-ITS-RR-13-05.
77 Loulou R., Goldstein G., Noble K. (2004), Documentation for the MARKAL Family of Models, Energy Technology Systems Analysis Programme, 65-73.
78 Manne A. S., Richels R. G. (2005), MERGE: An Integrated Assessment Model for Global Climate Change, Energy and Environment, Springer US, 175-189.
79 Millard-Ball A., Schipper L. (2011), Are We Reaching Peak Travel? Trends in Passenger Transport in Eight Industrialized Countries, Transport Reviews, 31(3), 357-378.   DOI
80 Mittal S., Hanaoka T., Shukla P. R., Masui T. (2015), Air Pollution Co-benefits of Low Carbon Policies in Road Transport: a Sub-national Assessment for India, Environmental Research Letters, 10(8), 085006.   DOI