Browse > Article
http://dx.doi.org/10.3795/KSME-B.2017.41.1.069

Liquid Flow Characteristics in 3D-Printed Rectangular Microchannel  

Park, Jaehyun (Graduate school of Mechanical Engineering, Changwon Nati'l Univ.)
Park, Heesung (Graduate school of Mechanical Engineering, Changwon Nati'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.41, no.1, 2017 , pp. 69-74 More about this Journal
Abstract
The validity of friction factor theory, based upon conventional-sized passages for microchannel flows, is an active area of research. The high surface to volume ratio of a microchannel offers many advantages over macroscale devices and processes. This study focused on the laminar flow (16 to $664{\mu}m$ for single-phase liquid flow. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. These results demonstrated that a 3D printer can drastically simplify custom microchannel fabrication and still support complex features, which are typically only accessible with advanced fabrication techniques.
Keywords
3D Printer; Microchannel; Pressure Drop; Friction Factor; Water Flow; Laminar Flow;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Peiyi, W. and Little, W. A., 1983, "Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson refrigerators," Cryogenics, Vol. 23, pp. 273-277.   DOI
2 Son, S., Han, S., Sung, I. and Kim, W., 2013, "Surface Smoothing of Blastes Glass Micro-channels using Abrasive Waterjet," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 12, pp. 1159-1165.   DOI
3 Joo, B., Baek, S. and Oh, S., 2006, "Micro Channel Forming with Ultrathin Metal Foil, 2006," Trans. Korean Soc. Mech. Eng. A, Vol. 30, No. 2, pp. 159-163.
4 Connor, J. O., Punch, J., Jeffers, N. and Stafford, J., 2014, "A Dimensional Comparison Between Embedded 3D-printed and Silicon Microchannels," Journal of Physics 2014, 012009.
5 Aritome, K., Bula, W. P., Sakamoto, K., Murakam, Y. and Miyake, R., 2013, "3D Printed Microfluidic Devices and Reconfigurable Analysis System," 17th International Conference in Miniaturized Systems for Chemistry and Life Sciences.
6 White, F. M., 1994, Fluid Mechnics, Third ed., McGraw-Hill.
7 Kays, W. M. and Crawford, M. E., 1993, Convective Heat and Mass Transfer, third ed., McGraw-Hill.
8 Bejan, A., 1990, Convection Heat Transfer, Wiley.
9 Knight, R. W., Hall, D. J., Goodling, J. S. and Jaeger, R. C., 1992, "Heat Sink Optimization with Application to Microchannels," IEEE Trans. Compon., Hybr., Manufact. Technol. 15, pp. 832-842.   DOI
10 Comina, G., Suska, A. and Filippini, D., 2015, "3D Printed Unibody Lab-on-a-chip: Features Survey and Check-valves Integration," Micromachines 2015, Vol. 6, pp. 437-451.   DOI
11 Steinke, M. E. and Kandlikar, S. G., 2006, "Single-phase Liquid Friction Factors in Microchannels," International Journal of Thermal Sciences 45, pp. 1073-1083.   DOI
12 Pfund, D., Rector, D., Shekarriz, A. Popescu. A. and Welty, J., 2000, "Pressure Drop Measurement in a Microchannel," AIChE Journal, Vol. 46, No. 8.
13 Asadi, M., Xie, G. and Sunden, B., 2014, "A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-phase Microchannles," International Journal of Heat and Mass Transfer 79, pp. 34-53.   DOI
14 Mohammed, H. A., Bhaskaran, G., Shuaib, N. H. and Saidur, R., 2011, "Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger using Nanofluis: A Review," Renewable and Sustainable Energy Reviews 15, pp. 1502-1512.   DOI
15 Park, H. and Punch, J., 2008, "Friction Factor and Heat Transfer in Multiple Microchannels with Uniform Flow Distribution," International Journal of heat and Mass Transfer 51, pp. 4535-4543.   DOI
16 Mun, J. and Kim, S., 2011, "Study in Heat Transfer Characteristics for Single-phase Flow in Rectangular Microchannels," Trans. Korean Soc. Mech. Eng B, Vol. 35, No. 9, pp. 891-896.   DOI
17 Hrnjak, P. and Tu, X., 2007, "Single Phase Pressure Drop in Microchannels," International Journal of heat and Fluid Flow 28, 2-14.   DOI
18 Papautsky, I., Gale, B. K., Mohanty, S., Ameel. T. A. and Frazier, A. B., "Effects of Rectangular Microchannel Aspect Ratio on Laminar Friction Constant,".
19 Bahrami, M., Yovanovich, M. M. and Culham, J. R., 2005, "Pressure Drop of Fully-developed, Laminar Flow in Microchannels of Arbitrary Cross-section," ICMM 2005-75109.
20 Akbari, M., Sinton, D. and Bahrami, M., 2009, "Pressure Drop in Rectangular Microchannels as Compared with Theory Based on Arbitrary Cross Section," Journal of Fluids Engineering, Vol. 131, 041202-1.   DOI
21 Judy, J., Maynes, D. and Webb, B. W., 2002, "Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels," International Journal of Heat and Mass Transfer 45, pp. 3477-3489.   DOI
22 Bucci, A., Celata, G. P., Cumo, M., Serra, E. and Zummo, G., 2003, "Water Single-phase Fluid Flow and Heat Transfer in Capillary Tubes," ICMM2003-1037.
23 Jeon, S., Lee, K. and Moon, D., 2011, "Numerical Study on the Performance of a Microchannel Heat Exchanger with a Novel Channel Array," Trans. Korean Soc. Mech. Eng, B, Vol. 35, No. 11, pp. 1119-1126.   DOI
24 Mawatari, K., Kazoe, Y., Shimizu, H., Pihosh, Y. and Kitamori, T., 2014, "Fundamantal Technologies, Unique Liquid Properties, and Application in Chemical and Bio Analysis Methods and Devices," American Chemical Society, 86, pp. 4068-4077.
25 Lee, J. and Lee, K., 2015, "Prediction of Two-phase Taylor Flow Characteristics in a Rectangular Microchannel," Trans. Korean Soc. Mech. Eng, B, Vol. 39, No. 7, pp. 557-566.   DOI
26 Mirmanto, Kenning, D. B. R. Lewis, J. S. and Karayiannis, T. G., 2012, "Pressure Drop and Heat Transfer Characteristics for Single-phase Developing Flow of Water in Rectangular Microchannels," 6th European Thermal Sciences conference.
27 Park, H., 2009, "A Microchannel Heat Exchanger Design for Microelectronics Cooling Correlating the Heat Transfer Rate in Terms of Brinkman Number," Microsyst Technol 15:1373-1378.   DOI
28 Sahar, A. M., Oezemir, M. R., Fayyadh, E. M. Wissink, J., Mahmoud, M. M. and Karayiannis, T. G., 2016," Single-phase Flow Pressure Drop and Heat Transfer in Rectangular Metallic Microchannels," Applied Thermal Engineering 93, pp. 1324-1336.   DOI