Browse > Article
http://dx.doi.org/10.3795/KSME-A.2017.41.7.673

A Development of CNC Engraving Machine System for Non-experts  

Yang, Min Cheol (Dept. of Design and Engineering, Seoul Nat'l Univ. of Science and Technology)
Chung, Yunchan (Dept. of Design and Engineering, Seoul Nat'l Univ. of Science and Technology)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.41, no.7, 2017 , pp. 673-682 More about this Journal
Abstract
As the culture of making things based on "do-it-yourself" (DIY) activity is increasingly promoted, the use of recent digital technologies and tools, including the 3D printer, have become widespread. However, the use of computerized numerical control (CNC) engraving machine is considered difficult because of the complicated procedures and specialized knowledge required for its operation. Therefore, this study aims to resolve the issue that limits the usability of the CNC engraving machine. This paper presents a novel CNC engraving machine system for non-experts based on human-centered design. First, the size and type of the workpiece and tool are reduced. Second, computer-aided process planning (CAPP) steps such as tool path generation, workpiece clamping, and corresponding coordinate system are automated by compromising productivity and efficiency. As a result, a CNC engraving machine system that can be easily used by non-experts was developed. This development has great significance in that it opens up the possibility of using the CNC engraving machine for a wider range of DIY activities.
Keywords
CNC Engraving Machine; Engraving System; Prototyping; Human Centered Design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, Y. K., Jeon, J. H., Lee, S. Y. and Kim, H. J, 2014, "Trends in Standardization and Policy of ICD DIY," The Journal of the Korean Institute of Communication Sciences, Vol. 31, No. 7, pp. 47-51.
2 Kwak, K. H. and Park, S. W., 2013, "The Analysis of Technology Trends in Global 3D Printing Industry," Journal of the Korean Soc. Mech. Eng., Vol. 53, No. 10, pp. 58-64.
3 Soderberg, J., 2013, "Automating Amateurs in the 3D Printing Community," Work Organisation, Labour and Globalisation, Vol. 7, No. 1, pp. 124-139.   DOI
4 Pham, D. T. and Gault, R. S., 1998, "A Comparison of Rapid Prototyping Technologies," International Journal of Machine Tools and Manufacture, Vol. 38, No. 10-11, pp. 1257-1287.   DOI
5 Wong, K. V. and Hernandez, A., 2012, "A Review of Additive Manufacturing," International Scholarly Research Network Mechanical Engineering, pp. 1-10.
6 Álvares, A. J., Ferreira, J. C. E. and Lorenzo, R. M., 2008, "An Integrated Web-based CAD/CAPP/ CAM System for the Remote Design and Manufacture of Feature-based Cylindrical Parts," Journal of Intelligent Manufacturing, Vol. 19, No. 6, pp. 643-659.   DOI
7 Frank, M. C., Wysk, R. A. and Joshi, S. B., 2004, "Rapid Planning for CNC Milling - A New Approach for Rapid Prototyping," Journal of Manufacturing Systems, Vol. 23, No. 3, pp. 242-255.   DOI
8 Ming, X. G., Yan, J. Q., Wang, X. H., Li, S. N., Lu, W. F., Peng, Q. J. and Ma, Y. S., 2008, "Collaborative Process Planning and Manufacturing in Product Lifecycle Management," Computers in Industry, Vol. 59, No. 2-3, pp. 154-166.   DOI
9 Yao, S., Han, X., Yang, Y., Rong, Y., Huang, S. H., Yen, D. W. and Zhang, G., 2007, "Computer Aided Manufacturing Planning for Mass Customization: Part 2, Automated Setup Planning," The International Journal of Advanced Manufacturing Technology, Vol. 32, No. 1, pp. 205-217.   DOI
10 Xu, X. W. and He, Q., 2004, "Striving for a Total Integration of CAD, CAPP, CAM and CNC," Robotics and Computer-Integrated Manufacturing, Vol. 20, No. 2, pp. 101-109.   DOI
11 Gologlu, C., 2003, "A Constraint-Based Operation Sequencing for A Knowledge-Based Process Planning," Journal of Intelligent Manufacturing, Vol. 15, No. 4, pp. 463-470.   DOI
12 Yusof, Y. and Latif, K., 2014, "Survey on Computer-Aided Process Planning," The International Journal of Advanced Manufacturing Technology, Vol. 75, No. 1, pp. 77-89.   DOI
13 Yan, L., Lixin, H. and Feng, G., 2016, "Study on Positioning Method of Workpiece without Fixture Based on Binocular Vision," 2016 IEEE International Conference on Industrial Technology, pp. 798-803.
14 Frank, M. C., Wysk, R. A. and Joshi, S. B., 2006, "Determining Setup Orientations from the Visibility of Slice Geometry for Rapid Computer Numerically Controlled Machining," Journal of Manufacturing Science and Engineering, Vol. 128, No. 1, pp. 228-238.   DOI
15 Bakker, O. J., Papastathis, T. N., Ratchev, S. M. and Popov, A. A., 2013, "Recent Research on Flexible Fixtures for Manufacturing Processes," Recent Patents on Mechanical Engineering, Vol.6, No. 2, pp. 107-121.   DOI
16 Boonsuk, W. and Frank, M. C., 2009, "Automated Fixture Design for A Rapid Machining Process," Rapid Prototyping Journal, Vol. 15, No. 2, pp. 111-125.   DOI
17 Claverley, J. D. and Leach, R. K., 2010, "A Vibrating Micro-scale CMM Probe for Measuring High Aspect Ratio Structures," Microsystem Technologies, Vol. 16, No. 8, pp. 1507-1512.   DOI
18 Sladek, J., Blaszczyk, P. M., Kupiec, M. and Sitnik, R., 2011, "The Hybrid Contact-Optical Coordinate Measuring System," Measurement, Vol. 44, No. 3, pp. 503-510.   DOI
19 Tu, C. and Yu, L., 2009, "Research on Collision Detection Algorithm Based on AABB-OBB Bounding Volume," 2009 First International Workshop on Education Technology and Computer Science, pp. 331-333.