Browse > Article
http://dx.doi.org/10.3795/KSME-A.2010.34.9.1209

Mechanical Properties of Elastomeric Composites with Atmospheric-Pressure Flame Plasma Treated Multi-Walled Carbon Nanotubes and Carbon Black  

Sung, Jong-Hwan (School of Mechanical Engineering, Yeungnam Univ.)
Lee, Dong-Joo (School of Mechanical Engineering, Yeungnam Univ.)
Ryu, Sang-Ryeoul (School of Mechanical Engineering, Yeungnam Univ.)
Cho, Yi-Seok (Semyung Industrial Co., Ltd.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.34, no.9, 2010 , pp. 1209-1215 More about this Journal
Abstract
The effects of multi-walled carbon nanotube (MWCNT) content, carbon black (CB) content, atmospheric-pressure flame plasma (APFP) treatment, and acid treatment on the mechanical properties of elastomeric composites were investigated. For pure or filled rubbers with the given amount of CB (20 and 40 phr), the tensile strength and modulus of the elastomeric composites increase similarly with the MWCNT content. A composite with APFP-treated MWCNTs shows a hardening effect (high strength, high modulus, and high ductility) unlike the one with untreated MWCNTs. On the other hand, a composite with APFP-treated CB shows a softening effect (high strength, low modulus, and high ductility), which is unlike a composite with untreated CB. As the refluxing time increases from 1 h to 2 h and the sulfuric acid concentration increases from 60% to 90%, the tensile strength and modulus of a composite decrease. Thus, it is found that the MWCNT content, CB content, APFP treatment, sulfuric acid concentration, and refluxing time have an important effect on the mechanical properties of NBR composites.
Keywords
Atmospheric Pressure Flame Plasma; Multi-Walled Carbon Nano Tube; Carbon Black; Elastomeric Composite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Breton, Y., Delpaux, S., Benoit, R., Salvetat, J. P., Sinturel, C. and Beguin, F., 2002, Mol Cryst Liq Cryst, 387, pp. 135-140.   DOI
2 Kokai, F., Koshio, A., Shiraishi, M., Matsuta, T., Shimoda, S. and Ishihara, M., 2005, Diamond Related Mater, 14, pp. 724-728.   DOI   ScienceOn
3 Ryu, S. R. and Lee, D. J., 2008, Proceedings of The KSME Spring Annual Meeting, pp. 394-399.
4 Ryu, S. R. and Lee, D. J., 2009, Proceedings of The KSME Fall Annual Meeting, No. Fr12E009, pp. 261-266.
5 Sui, G., Zhong, W. H., Yang, X. P. and Yu, Y. H., 2008, Materials Science and Engineering A, 485, pp. 524-531.   DOI   ScienceOn
6 Pham, G. T., Park, Y. B., Liang, Z., Zhang, C. and Wang, B., 2008, Composites: Part B, 39, pp. 209-216.   DOI   ScienceOn
7 Kim, D. O. and Nam, J. D., 2006, Prospectives of Industrial Chemistry, 9(6), pp. 3-13.
8 Park, S. J., Cho, K. S., Zaborski, M. and Slusarski, L., 2002, Elastomer, 37(2), pp. 99-106.
9 Iijima, S., 1991, Nature, 354, pp. 56-58.   DOI
10 Fakhru’l-Razi, A., Atieh, M. A., Girun, N., Chuah, T. G., El-Sadig, M. and Biak, D. R. A., 2006, Composite Structures, 75, pp. 496-500.   DOI   ScienceOn
11 Ruoff, R. S. and Lorents, D. C., 1995, Carbon, 33, pp. 925-930.   DOI   ScienceOn
12 Lau, K. T. and Micrcea, C., 2004, Composites Part B, 35, pp. 95-101.   DOI   ScienceOn
13 Lau, K. T., 2003, Chem Phys Lett, 370, pp. 399-405.   DOI   ScienceOn
14 Frogley, M. D., Ravich, D. and Wagner, H. D., 2003, Composites Science and Technology, 63, pp. 1647-1654.   DOI   ScienceOn
15 Lopez-Manchado, M. A., Biagiotti, J., Valentini, L. and Kenny, J. M., 2004, Journal of Applied Polymer Science, 92, p. 3394.   DOI   ScienceOn
16 Sanjib, B., Christophe, S., Ouziyine, B., Marie-Louise, S., Sabu, T. and Jean-Paul, S., 2008, Carbon, 46, pp. 1037-1045   DOI   ScienceOn
17 Xiao, K. Q. and Zhang, L. C., 2004, J Mater Sci, 39, pp. 4481-4486.   DOI   ScienceOn
18 Hill, D. E., Lin, Y., Rao, A. M., Allard, L. F. and Sun, Y. P., 2002, Macromolecules, 35, pp. 9466-9471.   DOI   ScienceOn