Browse > Article
http://dx.doi.org/10.3795/KSME-A.2006.30.10.1242

Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction  

Lee Sung-Chul (포항공과대학교 기계공학과)
Kim Ki-Tae (포항공과대학교 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.30, no.10, 2006 , pp. 1242-1248 More about this Journal
Abstract
Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.
Keywords
Cap Model; Cold Compaction; Constitutive Model; Densification; Finite Element Analysis; Nano Powder; Triaxial Compression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Secondi, J., 2002, 'Modeling Powder Compaction from a Pressure-Density Law to Continuum Mechanics,' Powder Metallurgy, Vol. 45, No.3, pp. 213-217   DOI   ScienceOn
2 Kim, K. T., Choi, S. W. and Park, H., 2000, 'Densification Behavior of Ceramic Powder under Cold Compaction,' Journal of Engineering Materials and Technology, Vol. 122, pp. 238-244   DOI   ScienceOn
3 Gell, M., 1995, 'Application Opportunities for Nanostructured Materials and Coating,' Materials Science and Engineering A, Vol. A204, pp. 246-251   DOI   ScienceOn
4 Schwartz, E. G and Weinstein, A. S., 1964, 'Model for Compaction of Ceramic Powders,' Journal of the American Ceramic Society, Vol. 48, No.7, pp. 346-350   DOI
5 Strijbos, S., Broese, A. V. G. and Vermeer, P. A., 1979, 'Recent Progress in Understanding Die Compaction of Powders,' Journal of the American Ceramic Society, Vol. 62, pp. 57-59   DOI   ScienceOn
6 Mayo, M. J., 1996, 'Processing of Nanocrystalline Ceramics from Ultrafine Particles,' International Materials Reviews, Vol. 41, No.3, pp. 85-115   DOI   ScienceOn
7 Tszeng, T. C. and Wu, W. T., 1996, 'A Study of The Coefficients in Yield Functions Modeling Metal Powder Deformation,' Acta Materialia, Vol. 44, No.9, pp. 3543-3552   DOI   ScienceOn
8 Rittner, M. N. and Abraham, T., 1997, 'The Nanostructured Materials Industry,' American Ceramic Society Bulletin, Vol. 76, No.6, pp. 51-53
9 Suryanarayana, C., 1995, 'Nanocrystalline Materials,' International Materials Reviews, Vol. 40, No.2, pp. 41-64   DOI   ScienceOn
10 Verweij, H., 1998, 'Nanocrystalline and Nanoporous Ceramics,' Advanced Materials, Vol. 10, No. 17, pp. 1483-1486   DOI
11 ABAQUS User's I and II Manual, Hibbitt, Karlsson, and Sorensen, 1998
12 Reiterer, M., Kraft, T., Janosovits, U. and Riedel, H., 2004, 'Finite Element Simulation of Cold Isostatic Pressing and Sintering of SiC Components,' Ceramics International, Vol. 30, pp. 177-183   DOI   ScienceOn
13 Wang, J. C., 1984, 'Young's Modulus of Porous Materials,' Journal of Materials Science, Vol. 19, pp. 801-814   DOI
14 Song. H. J. and Chandler, H. W., 1990, 'The Determination of Some Properties of Ceramic Powders Using a Simple Cylindrical Apparatus,' British Ceramic Transactions, Vol. 89, pp. 49-52
15 Bortzmeyer, D., 1990, Compaction des Poudres Ceramiques, Doctoral Thesis, Ecole Nationale Superieure des Mines de Paris
16 Chtourou, H., Guillot, M., Gakwaya, A. and Guillot, M., 2002, 'Modeling of the Metal Powder Compaction Process Using the Cap Model. Part I: Experimental Material Characterization and Validation,' International Journal of Solids and Structures, Vol. 39, pp. 1059-1075   DOI   ScienceOn
17 Lee, S. C. and Kim, K. T., 2006, 'A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction,' Materials Science and Engineering A, submitted for publication   DOI   ScienceOn
18 Lee, S. C. and Kim, K. T., 2001, 'Densification Behavior of Aluminum Alloy Powder under Cold Compaction,' International Journal of Mechanical Sciences, Vol. 44, pp. 1295-1308   DOI   ScienceOn
19 Kim, H. S., 2003, 'Densification modeling for nanocrystalline metallic powders,' Journal of Materials Processing Technology, Vol. 140, pp. 401-406   DOI   ScienceOn
20 Park, H. and Kim K. T., 2001, 'Consolidation Behavior of SiC Powder under Cold Compaction,' Materials Science and Engineering A, Vol. A299, pp. 116-124   DOI   ScienceOn
21 Shima. S. and Mimura, K., 1986, 'Densification Behavior of Ceramic Powder,' International Journal of Mechanical Sciences, Vol. 28, No.1., pp. 53-59   DOI   ScienceOn