Browse > Article
http://dx.doi.org/10.22643/JRMP.2019.5.1.48

Establishment of automated manufacturing system for high-purity [18F]Sodium fluoride: 3-year production experience  

Jung, Soonjae (Division of Applied RI, Korea Institute of Radiological & Medical Sciences)
Kim, Jung Young (Division of Applied RI, Korea Institute of Radiological & Medical Sciences)
Han, Sang Jin (Division of Applied RI, Korea Institute of Radiological & Medical Sciences)
Seo, Youngbeom (DUCHEM BIO Co.LTD)
Lee, Kyo Chul (Division of Applied RI, Korea Institute of Radiological & Medical Sciences)
Ryu, Young Hoon (Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine)
Choi, Jae Yong (Division of Applied RI, Korea Institute of Radiological & Medical Sciences)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.5, no.1, 2019 , pp. 48-53 More about this Journal
Abstract
A bone metastasis is an important factor for prognosis and treatment of breast or prostate cancer patients. [$^{18}F$]Sodium fluoride ([$^{18}F$]NaF) is a PET radiopharmaceutical that can detect bone metastasis. Conventional [$^{18}F$]NaF production process included radioactive metal impurities because the product was prepared by adding saline after beam irradiation to $[^{18}O]H_2O$. In this study, we apply the method of removing radionuclidic impurities. To meet the criteria prescribed by GMP in quality control, we designed the custom-made [$^{18}F$]NaF automatic module. The mean radiochemical yield was $82.1{\pm}4.4%$ (n = 32) productions for 3 years) and the total preparation time was 4 min. The final produced [$^{18}F$]NaF solution meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.
Keywords
[$^{18}F$]Sodium fluoride; Bone scintigraphy; Positron emission tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 암등록통계. 보건복지부 2018.
2 Gibril F, Doppman JL, Reynolds JC, Chen CC, Sutliff VE, Yu F, Serrano J, Venzon DJ, Jensen RT. Bone metastases in patients with gastrinomas: a prospective study of bone scanning, somatostatin receptor scanning, and magnetic resonance image in their detection, frequency, location, and effect of their detection on management. J Clin Oncol 1998;16:1040-1053.   DOI
3 Cho EK. Treatment of Bone Metastasis Korean J Med 2011;81:300-306.
4 Khatcheressian JL, Wolff AC, Smith TJ, Grunfeld E, Muss HB, Vogel VG, Halberg F, Somerfield MR, Davidson NE. American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J Clin Oncol 2006;24:5091-5097.   DOI
5 Davis MA, Jones AL. Comparison of $^{99m}Tc$-labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 1976;6:19-31.   DOI
6 Bombardieri E, Buscombe J, Lucignani G, Schober O. Advances in Nuclear Oncology: Diagnosis and Therapy 1ed. London : Informa Healthcare; 2007. p.399-400.
7 Jeon TJ. 18-Fluoride-PET in Skeletal Imaging. Nucl Med Mol Imaging 2009;43:253-258.
8 Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962;3:332-334.
9 ChiltonHM, FrancisMD, ThrallJH. Radiopharmaceuticals for bone and bone marrow imaging. In: Swanson DP, Chilton HM, Thrall JH, eds. Pharmaceuticals in Medical Imaging: Radiopaque contrast media, Radiopharmaceuticals, enhancement agents for magnetic resonance imaging and ultrasound. New York: Macmillan Pub. Co: 1990. p.537-563.
10 Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28-49.   DOI
11 Park-Holohan SJ, Blake GM, Fogelman I. Quantitative studies of bone using $^{18}F$-fluoride and 99mTc-methylene diphosphonate: evaluation of renal and whole blood kinetics. Nucl Med Commun 2001;22:1037-1044.   DOI
12 Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Renstschler M, Neumaier B, Trager H, Nussle K, Reske SN. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone sciniraphy versus $^{18}F$ PET. J Nucl Med 1999;40:1623-1629.
13 Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kuhn T, Kreienberg R. Messer P, Nussle K, Elsner K, Glatting G, Trager H, Neumaier B, Diederichs C, Reske SN. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999;17:2381-2389.   DOI
14 Ito S, Sakane H, Deji S, Saze T, Nishizama K. Radioactive byproducts in $[^{18}O]H_2O$ used to produce $^{18}F$ for [$^{18}F$]FDG synthesis. Appl Radiat Isot 2006;64:298-305.   DOI
15 Schueller MJ, Alexoff DL, Schlyer DJ. Separating long-lived metal ions from $^{18}F$ during ${H_{2}}^{18}O$ recovery. Nucl Instr Meth Phys Res B 2007;261:795-799.   DOI
16 Bowden L, Vintro LL, Mitchell PI, O'Donnell RG, Seymour AM, Duffy GJ. Radionuclide impurities in proton-irradiated $[^{18}O]H_2O$ for the production of $^{18}F$-: activities and distribution in the [$^{18}F$]FDG synthesis process. Appl Radiat Isot 2009;67:248-255.   DOI
17 Sunderland J, Watkins GL, Erdahl CE, Sensoy L, Konik A. International workshop on targetry and target chemistry: a further exploration of the merits of a niobium/niobium vs niobium/havar target body/foil combination for [$^{18}F$]fluoride production: a detailed HP ${\gamma}$-spectrometry study. Denmark, 2010.
18 Hockley BG, Scott PJ. An automated method for preparation of [$^{18}F$]sodium fluoride for injection, USP to address the technetium-99m isotope shortage. Appl Radiat Isot 2010;68:117-119.   DOI