Browse > Article
http://dx.doi.org/10.22643/JRMP.2019.5.1.18

Evaluation of 99mTc-MAG3-2-nitroimidazole for hypoxic tumor imaging  

Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University College of Medicine)
Kim, Young Joo (Department of Nuclear Medicine, Seoul National University College of Medicine)
Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.5, no.1, 2019 , pp. 18-25 More about this Journal
Abstract
2-Nitroimidazole derivatives have been reported to accumulate in hypoxic tissue. We prepared a novel $^{99m}Tc-MAG_3$-2-nitroimidazole and evaluated the feasibility for hypoxia imaging agent. $Bz-MAG_3$-2-nitroimidazole was synthesized by direct coupling of $Bz-MAG_3$ and 2-nitroimidazole using dicyclohexylcarbodiimide. $Bz-MAG_3$-2-nitroimidazole was labeled with $^{99m}Tc$ in the presence of tartaric acid and $SnCl_2-2H_2O$ at $100^{\circ}C$ for 30 min. And the reaction mixture was purified by $C_{18}$ Sep-pak cartridge. The labeling efficiency and the radiochemical purity were checked by ITLC-SG/acetonitrile. The tumor was grown in balb/c mice for 8~13 days after the subcutaneous injection of tumor cells, CT-26 (murine colon adenocarcinoma cell). Biodistribution study and tumor autoradiography were performed in the xenografted mice after i.v injection of 74 kBq/0.1 mL and 19 MBq/0.1 mL of $^{99m}Tc-MAG_3$-2-nitroimidazole, respectively. In vivo images of $^{99m}Tc-MAG_3$-2-nitroimidazole in tumor bearing mice were obtained 1.5 hr post injection. The labeling efficiency was $45{\pm}20%$ and the radiochemical purity after purification was over 95%. Paper electrophoresis confirmed negative charge of $^{99m}Tc-MAG_3$-2-nitroimidazole. $^{99m}Tc-MAG_3$-2-nitroimidazole was very stable at room temperature and its protein binding was 53%. The $^{99m}Tc-MAG_3$-2-nitroimidazole exhibited high uptake in the liver, stomach and intestine. In biodistribution study using tumor bearing mice, the uptakes (% ID/g) of the tumor were $0.5{\pm}0.1$, $0.4{\pm}0.0$, $0.2{\pm}0.1$ and $0.1{\pm}0.1$ at 5, 15, 30 min and 4 hrs. Tumor/muscle ratio were $1.4{\pm}0.1$, $2.2{\pm}0.83$, $3.0{\pm}0.9$, and 3.7 (n=2) for 5, 15, 30 min and 4 hrs. The uptake in hypoxic area was found higher than in non-hypoxic area of tumor tissue by autoradiography. In vivo images showed the relatively faint uptake to the hypoxic tumor region. $^{99m}Tc-MAG_3$-2-nitroimidazole was successfully synthesized and found feasible for imaging hypoxia.
Keywords
Technetium-99m; 2-Nitroimidazole; $MAG_3$; Hypoxia; Tumor imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638-648.   DOI
2 Moulder JE, Rockwell S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 1987;5:313-341.   DOI
3 Chapman JD, Urtasun RC, Blakely EA, Smith KC, Tobias CA. Hypoxic cell sensitizers and heavy charged-particle radiations. Br J Cancer Suppl 1978;37:184-188.
4 Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-280.   DOI
5 Ballinger JR. Imaging hypoxia in tumors. Semin Nucl Med 2001;31:321-329.   DOI
6 Webster LT. Drugs used in chemotherapy of protozal infections. In: Gilman AG, Rall TW, Nies AS, Taylor P. eds. The pharmacological basis of therapeutics. 8th edn. New York. Perganon 1990:1002-4
7 Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, Krohn KA, Griffin TW. Imaging of hypoxia in human tumors with [F-18] fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992;22:199-212.   DOI
8 Valk PE, Mathis CA, Prados MD, Gilbert JC, Budinger TF. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med 1992;33:2133-2137.
9 Rasey JS, Hofstrand PD, Chin LK, Tewson TJ. Characterization of [$^{18}F$]fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 1999;40:1072-1079.
10 Yeh SH, Liu RS, Wu LC, Yang DJ, Yen SH, Chang CW, Yu TW, Chou KL, Chen KY. Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med 1996;23:1378-1383.   DOI
11 Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995;194:795-800.   DOI
12 Gronroos T, Eskola O, Lehtio K, Minn H, Marjamaki P, Bergman J, Haaparanta M, Forsback S, Solin O. Pharmacokinetics of [$^{18}F$]FETNIM: a potential marker for PET. J Nucl Med 2001;42:1397-1404.
13 Dolbier WR Jr, Li AR, Koch CJ, Shiue CY, Kachur AV. [$^{18}F$]-EF5, a marker for PET detection of hypoxia: synthesis of precursor and a new fluorination procedure. Appl Radiat Isot 2001;54:73-80.   DOI
14 Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M. Hypoxia-specific tumor imaging with $^{18}F$-fluoroazomycin arabinoside. J Nucl Med 2005;46:106-113.
15 Zanzonico P, O'Donoghue J, Chapman JD, Schneider R, Cai S, Larson S, Wen B, Chen Y, Finn R, Ruan S, Gerweck L, Humm J, Ling C. Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 2004;31:117-128.   DOI
16 Das T, Banerjee S, Samuel G, Sarma HD, Korde A, Venkatesh M, Pillai MR. $^{99m}Tc$-labeling studies of a modified metronidazole and its biodistribution in tumor bearing animal models. Nucl Med Biol 2003;30:127-134.   DOI
17 Mannan RH, Somayaji VV, Lee J, Mercer JR, Chapman JD, Wiebe LI. Radioiodinated 1-(5-iodo-5-deoxy-beta-D-arabinofuranosyl)-2-nitroimidazole (iodoazomycin arabinoside: IAZA): a novel marker of tissue hypoxia. J Nucl Med 1991;32:1764-1770.
18 Ballinger JR, Kee JW, Rauth AM. In vitro and in vivo evaluation of a technetium-99m-labeled 2-nitroimidazole (BMS181321) as a marker of tumor hypoxia. J Nucl Med 1996;37:1023-1031.
19 Johnson LL, Schofield L, Mastrofrancesco P, Donahay T, Nott L. Technetium-99m-nitroimadazole uptake in a swine model of demand ischemia. J Nucl Med 1998;39:1468-1475.
20 Melo T, Duncan J, Ballinger JR, Rauth AM. BRU59-21, a second-generation $^{99m}Tc$-labeled 2-nitroimidazole for imaging hypoxia in tumors. J Nucl Med 2000;41:169-176.
21 Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC, Chung YK. Synthesis and characterization of nitroimidazole derivatives for $^{68}Ga$-labeling and testing in tumor xenografted mice. J Med Chem 2010;53:6378-6385.   DOI
22 Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of technetium-99m $MAG_3$ as a hippuran replacement. J Nucl Med 1986;27:111-116.
23 Itoh K. $^{99m}Tc$-$MAG_3$: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med 2001;15:179-190.   DOI
24 Eshima D, Fritzberg AR, Taylor A Jr. $^{99m}Tc$ renal tubular function agents: current status. Semin Nucl Med 1990;20:28-40.   DOI
25 Linder KE, Chan YW, Cyr JE, Malley MF, Nowotnik DP, Nunn AD. TcO(PnA.O-1-(2-nitroimidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization, and xanthine oxidase-catalyzed reduction. J Med Chem 1994;37:9-17   DOI
26 Eshima D, Taylor A Jr. Technetium-99m ( $^{99m}Tc$) mercaptoacetyltriglycine: update on the new $^{99m}Tc$ renal tubular function agent. Semin Nucl Med 1992;22:61-73.   DOI