Browse > Article
http://dx.doi.org/10.6116/kjh.2019.34.6.79.

Anti-diabetic effects of the extract from Atractylodes lancea, Anemarrhena asphodeloides and Cinnamomum Cassia mixture in high fat diet-induced diabetic mice and regulation of the function in C2C12 mouse skeletal muscle cells  

Park, Ki Ho (Department of Herbology, college of Korean Medicine, Dongguk University)
Kang, Seok Yong (Department of Herbology, college of Korean Medicine, Dongguk University)
Kang, Anna (Department of Herbology, college of Korean Medicine, Dongguk University)
Jung, Hyo Won (Department of Herbology, college of Korean Medicine, Dongguk University)
Park, Yong-Ki (Department of Herbology, college of Korean Medicine, Dongguk University)
Publication Information
The Korea Journal of Herbology / v.34, no.6, 2019 , pp. 79-89 More about this Journal
Abstract
Objective : This study investigated the anti-diabetic effects of DM1, a herbal mixture with Atractylodis Rhizoma, Anemarrhenae Rhizoma, and Cinnamomi Cortex in high fat diet (HFD)-induced diabetic mice and the mechanism in C2C12 mouse skeletal muscle cells. Methods : The C57B/6 mice were fed high fat for 12 weeks, and then administrated DM1 extract (500 mg/kg, p.o.) for 4 weeks. The changes of body weight, calorie and water intakes, fasting blood glucose levels and the serum levels of glucose, insulin, triglyceride, HDL-cholesterol, AST and ALT were measured in mice. The histological changes of liver and pancreas tissues were also observed by H&E stain. C2C12 myoblasts were differentiated into myotubes and then treated with DM1 extract (0.5, 1, and 2 mg/㎖) for 24 hr. The expression of myosin heavy chain (MHC), PGC1α, Sirt1 and NRF1, and the AMPK phosphorylation were determined in the myotubes by western blot, respectively. Results : The DM1 extract administration significantly decreased the calorie and water intakes, glucose, triglyceride, AST and ALT levels and increased insulin and HDL-cholesterol in HFD-induced diabetic mice. DM1 extract inhibited lipid accumulation in liver tissue and improved glucose tolerance. In C2C12 myotubes, DM1 treatment increased the expression of MHC, PGC1α, Sirt-1, NRF-1 and the AMPK phosphorylation. Conclusion : In our results indicate that DM1 can improve diabetic symptoms by decreasing the obesity, glucose tolerance and fatty liver in HFD-induced diabetic mice, and responsible mechanism is might be related with energy enhancement.
Keywords
Antidiabetic Effect; Atractylodis Rhizoma; Anemarrhenae Rhizoma; Cinnamomi Cortex; C2C12 cell; High Fat Diet; Obesity; Skeletal Muscle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee JS, Kim MH, Lee H, Yang WM. Anemarrhena asphodeloides Bunge ameliorates osteoporosis by suppressing osteoclastogenesis. Int J Mol Med. 2018 ; 42(6) : 3613-21.
2 Ren LX, Luo YF, Li X, Zuo DY, Wu YL. Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides BUNGE (Liliaceae). Biol Pharm Bull. 2006 ; 29(13) : 2304-6.   DOI
3 Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012 ; 11(2) : 230-41.   DOI
4 Zhang C, Fan L, Fan S, Wang J, Luo T, Tang Y, Chen Z, Yu L. Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules. 2019 ; 24(21) : E3473.
5 Li J, Teng Y, Liu S, Wang Z, Chen Y, Zhang Y, Xi S, Xu S, Wang R, Zou X. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol Rep. 2016 ; 35(3) : 1501-10.   DOI
6 Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 2010 ; 10 : 210.   DOI
7 Sharma H, Chauhan P, Singh S. Evaluation of the anti-arthritic activity of Cinnamomum cassia bark extract in experimental models. Integr Med Res. 2018 ; 7(4) : 366-73.   DOI
8 Zhao Y, Deng H, Li K, Wang L, Wu Y, Dong X, Wang X, Chen Y, Xu Y. Trans-cinnamaldehyde improves neuroinflammation-mediated NMDA receptor dysfunction and memory deficits through blocking NF-${\kappa}$B pathway in presenilin1/2 conditional double knockout mice. Brain Behav Immun. 2019 : S0889-1591(21)30105-9.
9 Xia T, Gao R, Zhou G, Liu J, Li J, Shen J. Trans-Cinnamaldehyde Inhibits IL-1${\beta}$-Stimulated Inflammation in Chondrocytes by Suppressing NF-${\kappa}$B and p38-JNK Pathways and Exerts Chondrocyte Protective Effects in a Rat Model of Osteoarthritis. Biomed Res Int. 2019 ; 2019 : 4039472.   DOI
10 Li W, Zhi W, Zhao J, Li W, Zang L, Liu F, Niu X. Cinnamaldehyde attenuates atherosclerosis via targeting the I${\kappa}$B/NF-${\kappa}$B signaling pathway in high fat diet-induced ApoE-/- mice. Food Funct. 2019 ; 10(7) : 4001-9.   DOI
11 Fu Y, Yang P, Zhao Y, Zhang L, Zhang Z, Dong X, Wu Z, Xu Y, Chen Y. Trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation. Evid Based Complement Alternat Med. 2017 ; 2017 : 4730878.
12 Beals JW, Burd NA, Moore DR, van Vliet S. Obesity Alters the Muscle Protein Synthetic Response to Nutrition and Exercise. Front Nutr. 2019 ; 6 : 87.   DOI
13 Skeletal muscle inflammation and insulin resistance in obesity. Huaizhu Wu, Christie M. Ballantyne. J Clin Invest. 2017 ; 127(1) : 43-54.   DOI
14 PARK WH, Cha YY, Song YK, Park TY, Kim HJ, Chung WS, Hwang EH, Shin SW, Jang BH, Ko SG. Review Articles : The Review on the Study of Oriental Obesity Pattern Identification: Focused on Korean Research Papers. J Kor Med Rehabi. 2014 ; 24 : 83-93.
15 Korea Institute of Oriental Medicine. Dongui Bogam. Available from : URL : https://mediclassics.kr/ books/8/
16 Acosta-Montaño P, García-González V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients. 2018 ; 10(4) : 393.   DOI
17 The co-textbook publishing committee of Korean oriental medicine school. The herbal medicine. Seoul : Younglimsa. 2016.
18 Kim KS, Kim BS. Study on the Mechanism of Wasting-thirst in Viewpoint of 'Viscera and Bowels' and 'Three Yin and Three Yang'. Kor J Ori Med Physiol Pathol 2012 ; 26(3) : 265-272.
19 Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013 ; 7(1) : 14-24.   DOI
20 Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011 ; 54(10) : 2506-14.   DOI
21 WHO. Obesity and overweight. 2018 February 16. Available from : URL : https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
22 Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014 ; 7 : 587-91.
23 Zada W, Zeeshan S, Bhatti HA, Mahmood W, Rauf K, Abbas G. Cinnamomum cassia: an implication of serotonin reuptake inhibition in animal models of depression. Nat Prod Res. 2016 ; 30(10) : 1212-4.   DOI
24 Kwon KB, Kim EK, Jeong ES, Lee YH, Lee YR, Park JW, Ryu DG, Park BH. Cortex cinnamomi extract prevents streptozotocin- and cytokineinduced beta-cell damage by inhibiting NFkappaB. World J Gastroenterol. 2006 ; 12(29) : 4331-7.   DOI
25 Kang NH, Mukherjee S, Yun JW. Trans-Cinnamic Acid Stimulates White Fat Browning and Activates Brown Adipocytes. Nutrients. 2019 ; 11(3) : E577.
26 Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. Am J Chin Med. 2017 ; 45(5) : 1017-31.   DOI
27 Yu HS, Lee SY, Jang CG. Involvement of 5-HT1A and GABAA receptors in the anxiolytic-like effects of Cinnamomum cassia in mice. Pharmacol Biochem Behav. 2007 ; 87(1) : 164-70.   DOI
28 Jung YH, Kwon SH, Hong SI, Lee SO, Kim SY, Lee SY, Jang CG. 5-HT1A receptor binding in the dorsal raphe nucleus is implicated in the anxiolyticlike effects of Cinnamomum cassia. Pharmacol Biochem Behav. 2012 ; 103(2) : 367-72.   DOI
29 Verspohl EJ, Bauer K, Neddermann E. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro. Phytother Res. 2005 ; 19(3) : 203-6.   DOI
30 Kim SY, Koo YK, Koo JY, Ngoc TM, Kang SS, Bae K, Kim YS, Yun-Choi HS. Platelet anti-aggregation activities of compounds from Cinnamomum cassia. J Med Food. 2010 ; 13(5) : 1069-74.   DOI
31 Kim JH, Jeong CH, Baik YS. A Study on Transmission and Transmutation of Disease in "Hwangjenaegyeong". J Korean Med Class. 2010 ; 23(2) : 205-37.
32 Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. Asian Pac J Trop Med. 2014 ; 7(6) : 421-8.   DOI
33 Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin Med. 2018 ; 13 : 59.   DOI
34 Murayama C, Wang CC, Michihara S, Norimoto H. Pharmacological effects of "jutsu" (Atractylodis rhizome and Atractylodis lanceae rhizome) on 1-(2,5-dimethoxy-4- iodophenyl)-2-aminopropane (DOI)-induced head twitch response in mice (I). Molecules. 2014 ; 19(9) : 14979-86.   DOI
35 Ji KY, Kim KM, Kim YH, Im AR, Lee JY, Park B, Na M, Chae S. The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine. 2019 ; 59 : 152789.   DOI
36 Wang J, Huang M, Yang J, Ma X, Zheng S, Deng S, Huang Y, Yang X, Zhao P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr Res. 2013 ; 61(1) : 1364117.   DOI
37 Kimura Y, Sumiyoshi M. Effects of an Atractylodes lancea rhizome extract and a volatile component ${\beta}$ -eudesmol on gastrointestinal motility in mice. J Ethnopharmacol. 2012 ; 141 : 530-6.   DOI
38 Oh CM, Park S, Kim H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab J. 2016 ; 40 : 89-98.   DOI
39 Jo HG, Kim BT. Literature Review on the Causes, Stages, and Treatment of Obesity. J Haehwa Med 1992 ; 1(2) : 61-71.
40 Kim BR, Cho YC, Le HTT, Vuong HL, Lee S, Cho S. Suppression of inflammation by the rhizome of Anemarrhena asphodeloides via regulation of nuclear factor-${\kappa}$B and p38 signal transduction pathways in macrophages. Biomed Rep. 2017 ; 6(6) : 691-7.   DOI
41 Wang Z, Cai J, Fu Q, Cheng L, Wu L, Zhang W, Zhang Y, Jin Y, Zhang C. Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena asphodeloides. Molecules. 2018 ; 23(10) : E2631.
42 Miura T, Ichiki H, Iwamoto N, Kato M, Kubo M, Sasaki H, Okada M, Ishida T, Seino Y, Tanigawa K. Antidiabetic activity of the rhizoma of Anemarrhena asphodeloides and active components, mangiferin and its glucoside. Biol Pharm Bull. 2001 ; 24(9) : 1009-11.   DOI
43 Zhao W, Wang M, Shao L, Liao M, Liu K, Huang F, Liu B. The total phenolic fraction of Anemarrhena asphodeloides inhibits inflammation and reduces insulin resistance in adipocytes via regulation of AMP-kinase activity. Planta Med. 2014 ; 80(2-3) : 146-52.   DOI
44 Yuan YL, Lin BQ, Zhang CF, Cui LL, Ruan SX, Yang ZL, Li F, Ji D. Timosaponin B-II Ameliorates Palmitate-Induced Insulin Resistance and Inflammation via IRS-1/PI3K/Akt and IKK/NF-${\kappa}$B Pathways. Am J Chin Med. 2016 ; 44(4) : 755-69.   DOI
45 Kim JY, Shin JS, Ryu JH, Kim SY, Cho YW, Choi JH, Lee KT. Anti-inflammatory effect of anemarsaponin B isolated from the rhizomes of Anemarrhena asphodeloides in LPS-induced RAW 264.7 macrophages is mediated by negative regulation of the nuclear factor-kappaB and p38 pathways. Food Chem Toxicol. 2009 ; 47(7) : 1610-7.   DOI
46 Hoa NK, Phan DV, Thuan ND, Ostenson CG. Insulin secretion is stimulated by ethanol extract of Anemarrhena asphodeloides in isolated islet of healthy Wistar and diabetic Goto-Kakizaki Rats. N. K. Exp Clin Endocrinol Diabetes. 2004 ; 112(9) : 520-5.   DOI
47 Lu WQ, Qiu Y, Li TJ, Tao X, Sun LN, Chen WS. Antiplatelet and antithrombotic activities of timosaponin B-II, an extract of Anemarrhena asphodeloides. Clin Exp Pharmacol Physiol. 2011 ; 38(7) : 430-4.   DOI
48 Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y. Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One. 2014 ; 9(3) : e90137.   DOI
49 Li X, Cui X, Wang J, Yang J, Sun X, Li X, Zhu Q, Li W. Rhizome of Anemarrhena asphodeloides counteracts diabetic ophthalmopathy progression in streptozotocin- induced diabetic rats. Phytother Res. 2013 ; 27(8) : 1243-50.   DOI
50 Zhao Q, Sun Y, Ji Y, Xu L, Liu K, Liu B, Huang F. Total polyphenol of Anemarrhena asphodeloides ameliorates advanced glycation end productsinduced endothelial dysfunction by regulation of AMP-Kinase. J Diabetes. 2014 ; 6(4) : 304-15.   DOI
51 Oh JK, Hyun SY, Oh HR, Jung JW, Park C, Lee SY, Park JH, Kim SY, Kim KH, Kim YK, Ryu JH. Effects of Anemarrhena asphodeloides on focal ischemic brain injury induced by middle cerebral artery occlusion in rats. Biol Pharm Bull. 2007 ; 30(1) : 38-43.   DOI