Browse > Article
http://dx.doi.org/10.6116/kjh.2019.34.6.131.

A Review on Phytochemistry and Pharmacology of Sparassis crispa  

Bang, Rodae (College of Korean Medicine, Gachon University)
Lee, Young-Jong (College of Korean Medicine, Gachon University)
Publication Information
The Korea Journal of Herbology / v.34, no.6, 2019 , pp. 131-138 More about this Journal
Abstract
Objective : Sparassis crispa has been recognized for its therapeutic value since the late 20th century because of its high β-glucan content. Since then, researches have been conducted on the pharmacological effects but most of these are individual studies on the effects of β-glucan from S. crispa and the comprehensive reviews are lacking. The purpose of this study was to review the compounds composition and pharmacological effects of S. crispa. Methods : This review analyzes the papers about chemical and nutritional composition and pharmacological effects of S. crispa. The data in this review is based on selected papers after reviewing all studies containing the keyword "sparassis crispa" for PubMed, NDSL, and J-Stage published before February 2019. Results : S. crispa is composed of protein, lipids, and carbohydrates. Most of the compounds are carbohydrates and the highest content is β-glucan. More than 40% of the dried fruiting body of S. crispa is composed of β-glucan. In addition, it contains polyphenols, flavonoids, terpenoids and phthalide-based compounds. Broad spectrum of its pharmacological actions have been established which include immunomodulatory, anticancer, antiinflammatory, antioxidant, hypoglycemic, antiobesic and neuroprotective effects. Conclusion : The most studied fields have been shown to have immunomodulatory and anticancer effects by inhibiting the proliferation of cancer cells and angiogenesis and increasing hematopoitic responses. Unique structure and characteristic of high molecular weight β-glucan are considered to have high immunomodulatory effects of S. crispa. And low molecular fractions or phthalides of S. crispa also have antioxidant, immunomodulatory and anticancer effects.
Keywords
Sparassis crispa; ${\beta}$-glucan; pharmacological properties; compounds composition;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 2000 ; 23(7) : 866-72.   DOI
2 Tada R, Harada T, Nagi-Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. NMR characterization of the structure of a ${\beta}$-(1$\rightarrow$3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohydr Res. 2007 ; 342(17) : 2611-8.   DOI
3 Berit H. Falch, Terje Espevik, Liv Ryan, Bjorn T. Stokke. The cytokine stimulating activity of (1$\rightarrow$3)-${\beta}$-D-glucans is dependent on the triple helix conformation. Carbohydrate Research. 2000 ; 329 : 587-96.   DOI
4 Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD. Dectin-1 is required for ${\beta}$-glucan recognition and control of fungal infection. Nat Immunol. 2007 ; 8(1) : 31-8.   DOI
5 Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N, Kinjo T, Nakamura K, Kawakami K, Iwakura Y. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunology. 2007 ; 8 : 39-46.   DOI
6 Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. Analysis of Mineral, Amino Acid and Vitamin Contents of Fruiting Body of Sparassis crispa. . J Life Science. 2007 ; 17(9) : 1290-93.   DOI
7 Yoshida H. Changes in carbohydrates and organic acids in the mycelium during vegetative growth of Sparassis crispa Wulf.: Fr. Japanese Society of Mushroom Science & Biotechnology. 2005 : 13(3) : 149-55.
8 Yoshida H. Hanabiratake mushroom [Sparassis crispa (Wulf.: Fr.)] chemical composition cultivated on sawdust substrate beds. apanese Society of Mushroom Science & Biotechnology. 2004 ; 12(4) : 157-63.
9 Bang S, Chae HS, Lee C, Choi HG, Ryu J, Li W, Lee H, Jeong GS, Chin YW, Shim SH. New Aromatic Compounds from the Fruiting Body of Sparassis crispa (Wulf.) and Their Inhibitory Activities on Proprotein Convertase Subtilisin/Kexin Type 9 mRNA Expression. J Agric Food Chem. 2017 ; 65(30) : 6152-57.   DOI
10 Kim MS, Lee KT, Jeon SM, Ka KH. The Quantities of Methyl Orsellinate and Sparassol of Sparassis latifolia by Host Plants. The Korean journal of mycology. 2013 ; 41(4) : 236-42.   DOI
11 Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Biomed Res Int. 2013 ; 9.
12 Woodward S, Sultan HY, Barrett DK, Pearce RB. "Two new antifungal metabolites produced by Sparassis crispa in culture and in decayed trees," Journal of General Microbiology. 1993 ; 139(1) : 153-59.   DOI
13 Kodani S, Hayashi K, Hashimoto M, Kimura T, Dombo M, Kawagishi H. New sesquiterpenoid from the mushroom Sparassis crispa. Biosci Biotechnol Biochem. 2009 ; 73(1) : 228-29.   DOI
14 Shibata A, Hida TH, Ishibashi K, Miura NN, Adachi Y, Ohno N. Disruption of actin cytoskeleton enhanced cytokine synthesis of splenocytes stimulated with beta-glucan from the cauliflower medicinal mushroom, Sparassis crispa Wulf.:Fr. (higher Basidiomycetes) in vitro. Int J Med Mushrooms. 2012 ; 14(3) : 257-69.   DOI
15 Harada T, Ohno N. Contribution of dectin-1 and granulocyte macrophage-colony stimulating factor (GM-CSF) to immunomodulating actions of betaglucan. Int Immunopharmacol. 2008 ; 8(4) : 556-66.   DOI
16 Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Granulocyte-macrophage colony-stimula- ting factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA2 mice in vitro. J Interferon Cytokine Res. 2004 ; 24(8) : 478-89.   DOI
17 Cristina L, Harry J, Wichers, Huub F, Savelkoul J. Antiinflammatory and Immunomodulating Properties of Fungal Metabolites. Mediators of Inflammation. 2005 ; 2 : 63-80.
18 Hasegawa A, Yamada M, Dombo M, Fukushima R, Matsuura N, Sugitachi A. Sparassis crispa as biological response modifier. Gan To Kagaku Ryoho. 2004 ; 31(11) : 1761-3.
19 Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of beta-1,3-D-glucan purified from Hanabiratake, Sparassis crispa. Biol Pharm Bull. 2009 ; 32(2) : 259-63.   DOI
20 Nameda S, Harada T, Miura NN, Adachi Y, Yadomae T, Nakajima M, Ohno N. Enhanced cytokine synthesis of leukocytes by a beta-glucan preparation, SCG, extracted from a medicinal mushroom, Sparassis crispa. Immunopharmacol Immunotoxicol. 2003 ; 25(3) : 321-35.   DOI
21 Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG. J Interferon Cytokine Res. 2006 ; 26(4) : 235-47.   DOI
22 Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. IFN-gamma induction by SCG, 1,3-beta-D-glucan from Sparassis crispa, in DBA/2 mice in vitro. J Interferon Cytokine Res. 2002 ; 22(12) : 1227-39.   DOI
23 Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide - treated mice. Microbiol Immunol. 2006 ; 50(9) : 687-700.   DOI
24 Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohn N. Effect of SCG, 1,3-beta-Dglucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol Pharm Bull. 2002 ; 25(7) : 931-9.   DOI
25 Yoshitomi H, Iwaoka E, Kubo M, Shibata M, Gao M. Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP. J Nat Med. 2011 ; 65(1) : 135-41.   DOI
26 Ko JH, Jeon WJ, Kwon HS, Yeon SW, Kang JH. Anti-obesity Effects of Ethanolic Extract of Polygonatum sibiricum Rhizome in High-fat Diet-fed Mice. Korean journal of food science and technology. 2015 ; 47(4) : 499-503.   DOI
27 Lee MR, Hou JG, Begum S, Wang YB, Oh DS, Wi AJ, Yoon BS, Sung CK. Anti-obesity Effects of Sparassis crispa on High-fat Diet-induced Obese Mice. Journal of Life Science 2014 ; 24 (9) : 952-58.   DOI
28 Lee MA, Park JK, Um MH, Jeon JW, Lee JM, Park YK. Lipolytic Effect of Sparassis crispa Extracts in Differentiated 3T3-L1 Cells and High Fat Diet-induced Obese Mice. Journal of the Korean Society of Food Science and Nutrition. 2012 ; 41(12) : 1708-15.   DOI
29 Hu S, Wang D, Zhang J, Du M, Cheng Y, Liu Y, Zhang N, Wang D, Wu Y. Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate- Induced Toxicity in Differentiated PC12 Cells. Int J Mol Sci. 2016 ; 17(2) : E133.
30 Choi JH, Lee HJ, Kim S. Purification and antithrombotic activity of wulfase, a fibrinolytic enzyme from the fruit bodies of the edible and medicinal mushroom Sparassis crispa Wulf. ex. Fr. Applied Biochemistry and Microbiology. 2016 ; 52(6) : 608-14.   DOI
31 Kim EJ, Yoo KH, Kim YS, Seok SJ, Kim JH. Biological Activities of Wild Sparassis crispa Extracts. The Korean journal of mycology. 2015 ; 43(1) : 40-46.   DOI
32 Jeong SY, Kang S, Hua CS, Ting Z, Park S. Synbiotic effects of ${\beta}$-glucans from cauliflower mushroom and Lactobacillus fermentum on metabolic changes and gut microbiome in estrogen-deficient rats. Genes Nutr. 2017 ; 12 : 31.   DOI
33 Kimura T, Yamamoto K, Nishikaya Y. Comparison of the antitumor effect of the fruit body and the mycelia of Hanabiratake (Sparassis crispa). mushroom science and biotechnology. 2013 ; 21(3) : 129-32.
34 Ohno N, Nameda S, Harada T, Miura NN, Adachi Y, Nakajima M, Yoshida K, Yoshida H, Yadomae T. Immunomodulating activity of a ${\beta}$-glucan preparation, SCG, extracted from a culinarymedicinal mushroom, Sparasis crispa Wulf.:Fr. (Aphyllophoromycetidae), and application to cancer patients. Int J Med Mushr. 2003 ; 5 : 373-81.
35 Yamamoto K, Nishikawa Y, Kimura T, Dombo M, Matsura N, Sugitachi A. Antitumor Activities of Low Molecular Weight Fraction Derived from the Cultured Fruit Body of Sparassis crispa in Tumor-Bearing Mice. Nippon Shokuhin Kagaku Kogaku Kaishi. 2007 ; 54(9) : 419-23.   DOI
36 Syojyo A, Nagatoshi F, Yamamoto R et. Immunomodulatory activity of the Lipids components in the fruit-body of Sparassis crispa. The Annual research report of Soai University. 2014 ; 30 : 15-20.
37 Masafumi Y, Kyosuke Y, Takashi K, Munehiko D. Effects of Hanabiratake (Sparassis crispa) on Allergic Rhinitis in OVA-Sensitized Mice. Food Science and Technology Research. 2008 ; 14(6) : 589-94.   DOI
38 Kim HH, Lee S, Singh TS, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogenactivated protein kinase and nuclear factor-${\kappa}$B. Int J Mol Med. 2012 ; 30(2) : 344-50.   DOI
39 Kim EN, Roh SS, Jeong GS. Inhibitory Effect of Sparassis crispa (Wulf.) Extract on Monosodium Iodoacetate Induced Osteoarthritis. Korean Journal of Pharmacognosy. 2018 : 49 (3) : 262-69.
40 Han JM, Lee EK, Gong SY, Sohng JK, Kang YJ, Jung HJ. Sparassis crispa exerts anti - inflammatory activity via suppression of TLR-mediated NF-${\kappa}$B and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J Ethnopharmacol. 2019 ; 231: 10-18.   DOI
41 Kim IK, Yun YC, Shin YC, Yoo JY. Effect of Sparassis crispa Extracts on Immune Cell Activation and Tumor Growth Inhibition. Journal of Life Science. 2013 ; 23(8) : 984-88.   DOI
42 Yan GH, Choi YH. Sparassis crispa Attenuates Carbon Tetrachloride- Induced Hepatic Injury in Rats. Korean J Phys Anthropol. 2014 ; 27(3) : 113-22.   DOI
43 Prasad R, Varshney VK, Harsh NS, Kumar M. Antioxidant Capacity and Total Phenolics Content of the Fruiting Bodies and Submerged Cultured Mycelia of Sixteen Higher Basidiomycetes Mushrooms from India. Int J Med Mushrooms. 2015 ; 17(10) : 933-41   DOI
44 Lee DS, Kim KH, Yook HS. Antioxidant Activities of Different Parts of Sparassis crispa Depending on Extraction Temperature. Korean journal of food science and technology. 2016 ; 45(11) : 1617-22.
45 Yamamoto K, Kimura T. Dietary Sparassis crispa (Hanabiratake) Ameliorates Plasma Levels of Adiponectin and Glucose in Type 2 Diabetic Mice. Journal of Health Science. 2010 ; 56(5) : 541-46.   DOI
46 Yamamoto K, Kimura T. Orally and topically administered Sparassis crispa (Hanabiratake) improved healing of skin wounds in mice with streptozotocin- induced diabetes. Biosci Biotechnol Biochem. 2013 ; 77(6) : 1303-5.   DOI
47 Kimura T, Hashimoto M, Yamada M, Nishikawa Y. Sparassis crispa (Hanabiratake) ameliorates skin conditions in rats and humans. Biosci Biotechnol Biochem. 2013 ; 77(9) : 1961-3.   DOI
48 Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms. a modern perspective. Crit Rev Immunol. 1999 ; 19(1) : 65-96.
49 Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin - induced diabetic rats. Am J Surg. 2009 ; 197(4) : 503-9.   DOI
50 Takeyama A, Nagata Y, Shirouchi B, Nonaka C, Aoki H, Haraguchi T, Sato M, Tamaya K, Yamamoto H, Tanaka K. Dietary Sparassis crispa Reduces Body Fat Mass and Hepatic Lipid Levels by Enhancing Energy Expenditure and Suppressing Lipogenesis in Rats. J Oleo Sci. 2018 ; 67(9) : 1137-47.   DOI
51 Copot O, Tanase C. Maxent modelling of the potential distribution of ganoderma lucidum in north-eastern region of Romania. J Plant Dev. 2017 ; 24 : 133-144.
52 Novak M, Vetvicka V. ${\beta}$-glucans history and the present ; Immunomodulatory aspects and mechanisms of action. Immunotoxicol. 2008 ; 5 : 47-57.   DOI
53 Chan GC, Chan WK, Sze DM. The effects of ${\beta}$-glucan on human immune and cancer cells. J Hematol Oncol. 2009 ; 2 : 25.   DOI
54 Park HG, Shim YY, Choi SO, Park WM. New method development for nanoparticle extraction of water-soluble ${\beta}$-(1$\rightarrow$3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem. 2009 ; 57 : 2147-54.   DOI
55 Nakajima M. Sparassis crispa ${\beta}$-glucan 1.3. 1st ed. Seoul : Health Newspaper. 2014 : 19-20.
56 Kamae, Senji, Igarashi, Tsuneo. On the Brown Cubical Butt Rot of Larch, Firs and other Conifers Caused By Sprassis crispa (WULF.) FR. in Japan. Research Bulletins Of The College Experiment Forests Hokkaido University. 1959 ; 20(1) : 77-92.
57 Ka KH, Park WC, Yun GH, Oh DS, Cheon WJ, Park JM. Sparassis crispa. National Institute of Forest Science. 2007 ; 295 : 13-15.
58 Harada T, Nagi Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Antibody to soluble 1,3/1,6-beta-D-glucan, SCG in sera of naive DBA/2 mice. Biol Pharm Bull. 2000 ; 26(8) : 1225-8.   DOI
59 Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. J, Agric Food Chem. 2008 ; 56(16) : 7265-70.   DOI
60 Kiyama R, Furutani Y, Kawaguchi K, Nakanishi T. Genome sequence of the cauliflower mushroom Sparassis crispa (Hanabiratake) and its association with beneficial usage. Sci Rep. 2018 ; 8(1) : 16-53.   DOI
61 Yoshikawa K, Kokudo N, Hashimoto T, Yamamoto K, Inose T, Kimura T. Novel phthalide compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anti-cancer related activity. Biol Pharm Bull. 2010 ; 33(8) : 1355-9.   DOI
62 Tada R, Adachi Y, Ohno N. A concise method using nuclear magnetic resonance spectroscopy to determine the source of the ${\beta}$-glucan extracted from various mushrooms. Int J Med Mushrooms. 2012 ; 14(4) : 339-45.   DOI