Browse > Article
http://dx.doi.org/10.6116/kjh.2018.33.3.63.

Effect of Plantaginis asiaticae Folium water extract on expression of lipid-related protein expression metabolism in high fat-induced obese C57BL/6 mice  

Kim, So Young (Dept. of Herbal Pharmacology, Coll. of Korean Medicine, Daegu Haany Univ.)
Jeong, Mi Jin (Dept. of Herbal Pharmacology, Coll. of Korean Medicine, Daegu Haany Univ.)
Kim, Yoo Jin (Dept. of Herbal Pharmacology, Coll. of Korean Medicine, Daegu Haany Univ.)
Lee, Un-Tak (Ebiche co., Ltd.)
Choo, Sung-Tae (Ebiche co., Ltd.)
Kim, Mi Ryeo (Dept. of Herbal Pharmacology, Coll. of Korean Medicine, Daegu Haany Univ.)
Publication Information
The Korea Journal of Herbology / v.33, no.3, 2018 , pp. 63-70 More about this Journal
Abstract
Objective : Previous studies showed that water extract of Plantago asiatica (Plantaginis asiaticae Folium, PAF) significantly controlled in body weights, adipose tissue weights and blood lipid profiles in obese C57BL/6 mice. To investigate the mechanism of anti-obesity action of PAF, expressions of obesity-related proteins were identified such as p-AMPK and p-ACC in hypothalamus, UCP-1 in brown adipose tissue, p-AMPK, p-ACC, SREBP-1c, $PPAR{\gamma}$, HMGCR and CPT-1 in liver. Method : Five-weeks old male C57BL/6 mice were divided into 5 groups; ND (normal diet + 0.9% saline), HFD (high-fat diet + 0.9% saline), PC (high-fat diet+Garcinia cambogia 500 mg/kg), PAF 100 and 300 (high-fat diet + PAF 100 or 300 mg/kg). PAF was treated orally for 6 weeks. The protein expression of AMPK, p-AMPK, ACC, p-ACC, $PPAR{\gamma}$, SREBP-1c, HMGCR, CPT-1 and UCP-1 were identified by expression levels of proteins through western blot analysis. Result : The results showed that protein expressions on hypothalamic p-AMPK and p-ACC did not differ between the HFD and PAF groups. In addition, PAF did not affect the increase of UCP-1 in brown adipose tissue. The protein expression levels of hepatic p-AMPK, p-ACC and CPT-1 increased in PAF groups compared to HFD group. And those of $PPAR{\gamma}$, SREBP-1c and HMG-CoA decreased in PAF groups compared to HFD group. Conclusion : These results suggest that the PAF administration induce weight loss via inhibition of lipid metabolism-related protein expressions in hepatic tissues. Therefore, PAF could be used as a potent material of anti-obesity products for prevention and treatment of obesity.
Keywords
Plantago asiaticae Folium; anti-obesity; protein expression;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002 ; 415 : 339-43.   DOI
2 Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept. J Physiol. 2006 ; 574 : 7-15.   DOI
3 Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993 ; 34 : 1637-59.
4 McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system-From concept to molecular analysis. Eur J Biochem. 1997 ; 244 : 1-14.   DOI
5 Clouet P, Henninger C, Bard J. Study of some factors controlling fatty acid oxidation in liver mitochondria of obese Zucker rats. Biochem J. 1986 ; 239 : 103-8.   DOI
6 Danae CO, Sugeyla BG, Jaime RBB, Rola AA, Veronica RL. Anti-inflammatory activity of iridoids and verbascoside isolated from Castilleja tenuiflora. 2013 ; 18(10) : 12109-18.   DOI
7 Kim SY, Jeong MJ, Kim YJ, Lee UT, Choo ST. Effect of Plantaginis asiaticae Folium water extract on body fat loss in high fat-induced obese C57BL/6 mice. Kor J Herbol. 2018 ; 33(2) : 59-68.   DOI
8 Turel I, Hanefi H, Erten R, Oner AC, Cengiz N, Yilmaz O. Hepatoprotective and antiinflammatory activities of Plantago major L. Indian J Pharmacol. 2009 ; 41(3) : 120-4.   DOI
9 Park SJ, Sihn EH, Kim CA. Component analysis and antioxidant activity of Plantago asiatica L. Korea J food Preserv 2011 ; 18(2) : 212-8.   DOI
10 Hu JL, Nie SP, Wu QM, Li C, Fu ZH, Gong J, Cui SW, Xie MY. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse. J Agric Food Chem. 2014 ; 62(1) : 229-34.   DOI
11 Huang DF, Xie MY, Yin JY, Nie SP, Tang YF, Xie WM, Zhou C. Immunomodulatory activity of the seeds of Plantago asiatica L. J Ethnopharmacol. 2009 ; 124(3) : 493-8.   DOI
12 Yin JY, Nie SP, Zhou C, Wan Y, Xie MY. Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantago asiatica L. J Sci Food Agric. 2009 ; DOI 10.1002/jsfa.3793.   DOI
13 Hwang JT, Kwon DY, Yoon SH. AMP-activated protein kinase: a potential target for the disease prevention by natural occurring polyphenols. N Biotechnol. 2009 ; 26 : 17-22.   DOI
14 Ravn H, Brimer L. Struture and antibacterial activity of plantamajoside, a caffeic acid sugar ester from Plantago major subs major . Phytochemistry. 1988 ; 27(11) : 3433-7.   DOI
15 Shin HY, Kang HT. Recent trends in the prevalence of underweight, overweight, and obesity in Korean adults: The korean national health and nutrition examination survey from 1998 to 2014. J Epidemiol. 2017 ; 27(9) : 413-9.   DOI
16 Tundis R, Bonesi M, Menichini F, Loizzo MR, Conforti F, Statti G, Pirisi FM, Menichini F. Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts andisolatedconstituents. NatProdCommun. 2012 ; 7 : 1015-20.
17 James OH, Edward LM, Holly TW. Dietary fat intake and regulation of energy balance: implications for obesity. J Nutr. 2000 ; 130 : 284S-8S.   DOI
18 Korea centers for disease control and prevention. Korea health statistics 2014: Korea national health and nutrition examination survey (KNHANES VI). 2016.
19 Scott MG. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab. 2004 ; 89(6) : 2595-600.   DOI
20 Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010 ; 9(6) : 465-82.   DOI
21 Song MY, Lim SK, Wang JH, Kim HJ. The root of Atractylodes macrocephala Koidzumi prevents obesity and glucose intolerance and increases energy metabolism in mice. Int J Mol Sci. 2018 ; DIO: 10.3390/ijms19010278.   DOI
22 Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest. 2009 ; 119 : 582-94.   DOI
23 Daneschvar HL, Aronson MD, Smetana GW. FDAapproved anti-obesity drugs in the United states. Am J Med. 2016 ; 129(8) : 879.e1-6.   DOI
24 Kang JG, Park CY. Anti-obesity drugs: a review about their effects and safety. Diabetes Metab J. 2012 ; 36 : 13-25.   DOI
25 Yun JW. Possible anti-obesity therapeutics from nature - A review. Phytochemistry. 2010 ; 71 : 1625-41.   DOI
26 Saad B, Zaid H, Shanak S, Kadan S. Herbal-derived anti-obesity compounds and their action mechanisms. Anti-diabetes and Anti-obesity Medicinal Plants and Phytochemicals. 2017 ; 129-44.
27 Ye CL, Jiang CJ. Optimization of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydr Polym. 2011 ; 84 : 495-502.   DOI
28 Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunffld C, Feingold KR. Up-regulation of peroxisome proliferator-activated receptors (PPAR-${\alpha}$) and PPAR-${\gamma}$ messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-${\gamma}$-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology. 2000 ; 141(11) : 4021-31.   DOI
29 Spiegelman BM. PPAR-${\gamma}$: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998 ; 47: 507-14.   DOI
30 Jones JR, Barrick C, Kim KA, Lindner B, Fujimoto Y. Deletion of $PPAR{\gamma}$ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA. 2005 ; 102 (17) : 6207-12.   DOI
31 Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013 ; 19(10) : 1252-63.   DOI
32 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis on the liver. J Clin Invest. 2002 ; 109 : 1125-31.   DOI
33 Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol. 2006 ; 45 : 717-24.   DOI
34 Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr. 2011 ; 2(4) : 304-16.   DOI
35 Palou A, Pico C, Bonet ML, Oliver P. The uncoupling protein, thermogenin. Int J Biochem Cell Biol. 1998 ; 30 : 7-11.   DOI
36 Petrovic N, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Thermogenically competent nonadrenergic recruitment in brown preadipocytes by a $PPAR{\gamma}$ agonist. Am J Physiol Endocrinol Metab. 2008 ; 295 : 287-96.   DOI
37 Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 ; 89 : 331-40.   DOI
38 Francesc V, Roser I, Marta G. PPARs in the control of uncoupling proteins gene expression. PPAR Res. 2007 ; DIO:10.1155/2007/74364.   DOI
39 Festuccia WT, Blanchard PG, Richard D, Deshaies Y. Basal adrenergic tone is required for maximal stimulation of rat brown adipose tissue UCP1 expression by chronic PPAR-gamma activation. Am J Physiol Regul Integr Comp Physiol. 2010 ; DIO:10.1152/ajpregu.00821.
40 Kolehmainen M, Vidal H, Alhava E, Uusitupa MIJ. Sterol regulatory element binding protein 1c (SREBP-1c) expression in human obesity. Obes Res. 2001 ; 9(11) : 706-12.   DOI
41 Spiegelman BM, Flier JS. Obesity and the Regulation of Energy Balance. Cell. 2002 ; 104 : 531-43.
42 O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol. 2013 ; 366 : 135-51.   DOI
43 Hawley SA, Davison M, Wood A, Davies SP, Besi RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase from rat liver, and identification of threonine-172 as the major site at which it phos-phorylates and activates AMPactivated protein kinase. J Biol Chem. 1996 ; 271 : 27879-87.   DOI
44 Kong CS, Kim JA, Kim SK. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem Toxicol. 2009 ; 47 : 2401-6.   DOI
45 Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem. 2004 ; 279 : 12005-8.   DOI