Browse > Article
http://dx.doi.org/10.6116/kjh.2013.28.6.15.

The Effects of Sinapis Semen, Raphani Semen, and mixture decoction on the Asthmatic Mouse Model  

Kim, Chang-Min (College of Korean Medicine, Sangji University)
Lee, Young Cheol (College of Korean Medicine, Sangji University)
Lee, Jang-Cheon (School of Korean Medicine, Pusan National University)
Publication Information
The Korea Journal of Herbology / v.28, no.6, 2013 , pp. 15-23 More about this Journal
Abstract
Objectives : To clarify the possible effects of Sinapis Semen and Raphani Semen on the development of pulmonary eosinophilic inflammation in a asthmatic mouse model. Methods : BALBav/c mice were sensitized to OVA followed intratracheally and by aerosol allergene challenges. We investigated the effect of Sinapis Semen and Raphani Semen on airway hyperresponsiveness, eosinophiic infitratio, immune cell phenotype, The2 cytokine product, and OVA-spedific IgE production. Results : Total lung cells, eosinophils, and lung leukocytes, OVA specific IgE levels, and Th 2cytokine levels such as IL-5, IL-13, IL-17, TNF-alpha, and eotaxin in BALF were reduced compared with those of OVA sensitized asthma mice (control). The absolute numbers of $CD3^+$, $CD3^+/CD69^+$, $CD3^-/CCR3^+$, $CD4^+$, $CD8^+$, $Gr-1^+/CD11b^+$, $B220^+/CD22^+$, $B220^+/IgE^+$ cells in lung tissiues significantly reduced compared to those of control. Specially total lung cells in BALF and the absolute number of $CD3^+/CD69^+$ and, $B220^+/IgE^+$ cells in lung tissiue effectively reduced in Sinapis Semen plus Raphani Semen compared to those of Sinapis Semen and Raphani Semen. Conclusions : These results indicate that Sinapis Semen plus Raphani Semen has deep inhibitory effects on airway inflammation and hyperresponsiveness in asmatic mouse model and also has effect of suppression of IL-5, IL-13, IL-17, OVA specific IgE production in BALF. The results verified that Sinapis Semen, Raphani Semen, and Sinapis Semen plus Raphani Semen could act as a immunomodulator which possess anti-inflammatory and anti-asthmatic property by modulating the relationship of Th1/Th2 cytokine imbalance.
Keywords
Sinapis Semen; Raphani Semen; Asthma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sempowski GD, Beckmann MP, Derdak S, Phipps RP. Subsets of murine lung fibroblasts express membrane-bound and soluble IL-4 receptors. Role of IL-4 in enhancing fibroblast proliferation and collagen synthesis. J Immunol. 1994 ; 152(7) : 3606-14.
2 Djukanovic R, Roche WR, Wilson JW, Beasley CR, Twentyman OP, Howarth RH, Holgate ST. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990 ; 142(2) : 434-57.   DOI   ScienceOn
3 Factor P. Gene Therapy for Asthma. Molecular Therapy. 2003 ; 7(2) : 148-52.   DOI   ScienceOn
4 Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 ; 137 : 62-9.   DOI   ScienceOn
5 Bousquet J, Chanez P, Lacoste JY, Barne'on G, Ghavanian N, Enander I, Venge P, Ahlstedt S, Simony-Lafontaine J, Godard P, Michel F-B. Eosinophilic inflammation in asthma. N Engl J Med. 1990 ; 323 : 1033-9.   DOI   ScienceOn
6 Gleich GJ. The eosinophil and bronchial asthma: current understanding. J Allergy Clin Immunol. 1990 ; 85 : 422-36.   DOI
7 Lotvall J, Inman M, O'Byrne P. Measurement of airway hyperresponsiveness: new considerations. Thorax. 1998 ; 53 : 419-24.   DOI   ScienceOn
8 Shaw RJ, Cromwell O, Kay AB. Preferential generation of leukotriene C4 by human eosinophils. Clin Exp Immunol. 1984 ; 56(3) : 716-22.
9 Herbology Editorial Committee Of Korean Medicine Schools. Herbology. Seoul : Younglimsa. 2004 : 418-9, 492-3.
10 Eskin NA, Raju J, Bird RP. Novel mucilage fraction of Sinapis alba L. (mustard) reduces azoxymethane-induced colonic aberrant crypt foci formation in F344 and Zucker obese rats. Phytomedicine. 2007 ; 14 : 479-85.   DOI   ScienceOn
11 Lee CS, Ju JS, Hwang WI. The Inhibitory Effect of Water Extracts of the Trichosanthes semen and Sinapsis semen Against Some Cancer Cells Growing. Korea Univ Med J. 1983 ; 20(1) : 39-49.
12 Takaya Y, Kondo Y, Furukawa T, Niwa M. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J Agric Food Chem. 2003 ; 51(27) : 8061-6.   DOI   ScienceOn
13 Taniguchi H, Kobayashi-Hattori K, Tenmyo C, Kamei T, Uda Y, Sugita-Konishi Y, Oishi Y, Takita T. Effect of Japanese Radish (Raphanus sativus) Sprout (Kaiware-daikon) on Carbohydrate and Lipid Metabolisms in Normal and Streptozotocin-induced Diabetic Rats. Phytother Res. 2006 ; 20(4) : 274-8.   DOI   ScienceOn
14 Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, Gerard C. A Critical Role for Eosinophils in Allergic Airways Remodeling. Science. 2004 ; 305(5691) : 1776-9.   DOI   ScienceOn
15 Suh SJ, Moon SK, Kim CH. Raphanus sativus and its isothiocyanates inhibit vascular smooth muscle cells proliferation and induce G1 cell cycle arrest. Int Immunopharmacol. 2006 ; 6(5) : 854-61.   DOI   ScienceOn
16 Schwartz DA, Thorne PS, Jagielo PJ, White GE, Bleur SA, Frees KL. Endotoxin responsiveness and grain dust-induced inflammation in the lower respiratory tract. Am J Physiol. 1994 ; 267 : 609-17.
17 Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA. Defining a Link with Asthma in Mice Congenitally Deficient in Eosinophils. Science. 2004 ; 305(5691) : 1773-6.   DOI   ScienceOn
18 Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA. Acidic Mammalian Chitinase in Asthmatic Th2 Inflammation and IL-13 Pathway Activation. Science. 2004 ; 304(5677) : 1678-82.   DOI   ScienceOn
19 Boushey HA. New and Exploratory Therapies for Asthma. Chest. 2003 ; 123 : 439-45.   DOI
20 Mukae H, Kadota J, Kohno S, Matsukura S, Hara K. Increase of activated T-cells in BAL fluid of Japanese patients with bronchiolitis obliterans organizing pneumonia and chronic eosinophilic pneumonia. Chest. 1995 ; 108 : 123-8.   DOI   ScienceOn
21 Marzio R, Mauel J, Betz-Corradin S. CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol. 1999 ; 21 : 565-82.   DOI   ScienceOn
22 Marsland BJ, Le Gros G. CD8 + T cells and immunoregulatory networks in asthm. Springer Semin Immun. 2004 ; 25 : 311-23.   DOI   ScienceOn
23 Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nature review. 2001 ; 1 : 108-16.
24 Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004 ; 22 : 789-815.   DOI   ScienceOn
25 Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, Saito Y, Hatano M, Tokuhisa T, Iwakura Y, Puccetti P, Iwamoto I, Nakajima H.IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008 ; 178 : 1023-32.   DOI   ScienceOn
26 Kemp RA, Ronchese F. Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol. 2001 ; 167(11) : 6497-502.   DOI
27 Berends C, Hoekstra MO, Dijkhuizen B, de Monchy JG, Gerritsen J, Kauffman HF. Expression of CD35 (CR1) and CD11b (CR3) on circulating neutrophils and eosinophils from allergic asthmatic children. Clin Exp Allergy. 1993 ; 23(11) : 926-33.   DOI   ScienceOn
28 Yachie A, Toma T, Miyawaki T, Taniguchi N. Expression of surface CD11b antigen and eosinophil activation. Nippon Rinsho. 1993 ; 51(3) : 593-7.
29 Fleming TJ, Fleming ML, Malek TR. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol. 1993 ; 151(5) : 2399-408.
30 Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V. Derangement of immune responses by myeloid suppressor cell. Cancer Immunol Immunother. 2004 ; 53 : 64-7.   DOI   ScienceOn
31 Wang J, Palmer K, Lotvall J, Milan S, Lei XF, Matthaei KI, Gauldie J, Inman MD, Jordana M, Xing Z. Circulating, but not local lung, IL-5 is required for the development of antigen-induced airways eosinophilia. J Clin Invest. 1998 ; 102(6) : 1132-41.   DOI   ScienceOn
32 Romagnani S. T-cell responses in allergy and asthma. Current Opinion in Allergy and Clinical Immunology. 2001 ; 1 : 73-8.   DOI
33 Bochner BS, Schleimer RP. The role of adhesion molecules in human eosinophils and basophils recruitment. J Allergy Clin Immunol. 1994 ; 94 : 427-38.   DOI   ScienceOn
34 Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996 ; 183(1) : 195-201.   DOI   ScienceOn
35 Kung TT, Stelts D, Zurcher JA, Watnick AS, Jones H, Mauser PJ, Fernandez X, Umland S, Kreutner W, Chapman RW, Egan RW. Mechanisms of allergic pulmonary eosinophilia in the mouse. J Allergy Clin Immunol. 1994 ; 94(6 Pt 2) : 1217-24.   DOI   ScienceOn
36 Gulbenkian AR, Egan RW, Fernandez X, Jones H, Kreutner W, Kung T, Payvandi F, Sullivan L, Zurcher JA, Watnick AS. Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am Rev Respir Dis. 1992 ; 146(1) : 263-6.   DOI   ScienceOn
37 Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999 ; 103 : 779-88.   DOI   ScienceOn
38 Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin. J Clin Invest. 1992 ; 90 : 1479-85.   DOI