Browse > Article
http://dx.doi.org/10.13066/kspm.2022.17.4.53

The Effect of the Contraction Pressure of the Hip Adductor Muscles on Thickness of Transversus Abdominis: A Randomized Controlled Trial  

Ju-Cheol, Park (Department of Physical Therapy, Graduate School of Rehabilitation Science, Daegu University)
Myeong-Ho, Lee (Department of Rehabilitation Sciences, Graduate School, Daegu University)
Myoung-Kwon, Kim (Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University)
Publication Information
Journal of the Korean Society of Physical Medicine / v.17, no.4, 2022 , pp. 53-63 More about this Journal
Abstract
PURPOSE: This study examined the changes in the thickness of the abdominal muscles, including the transversus abdominis, according to the set pressure applied by a pressure biofeedback unit during contractions of the hip adductor muscles. METHODS: After randomizing 40 healthy adult males in their 20 s and 30 s, the participants were instructed to match the pressure gauge indication of the pressure biofeedback device to continue contracting the hip adductor while maintaining it at 10 mmHg (low), 40 mmHg (medium), or 70 mmHg (high). The measurement was taken over five seconds using an ultrasound device. RESULTS: According to the contractile pressure applied to the hip adductor muscle, there was a significant difference in the muscle thickness change of the transverse abdominis muscle between 10 mmHg and 70 mmHg and between 40 mmHg and 70 mmHg. The muscle thickness ratio of the external oblique/abdominal muscle was significantly different between 10 mmHg and 70 mmHg and between 40 mmHg and 70 mmHg. CONCLUSION: Increased contraction pressure on the hip adductor muscle increases the muscle thickness of the abdominal transverse muscle. Interbody stability exercise with contractions of the hip adductor muscle is expected to help increase in the muscle thickness of the hip adductor muscle.
Keywords
Biofeedback; Contraction pressure; Hip adductor; Thickness; Transversus Abdominisk;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fritz JM, Whitman JM, Childs JD. Lumbar spine segmental mobility assessment: An examination of validity for determining intervention strategies in patients with low back pain. Arch Phys Med Rehabil. 2005;86(9):1745-52.   DOI
2 Akuthota V, Nadler S. Core strengthening. Arch Phys Med Rehabil. 2004;85:S82-92.
3 Cha HG. Effects of trunk stabilization exercise on the local muscle activity and balance ability of normal subjects. J Phys Ther Sci. 2018;30(6):813-5.   DOI
4 Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: Effect and possible mechanisms. J Electromyogr Kinesiol. 2003;13(4):361-70.   DOI
5 Matheson LN, Leggett S, Mooney V, et al. The contribution of aerobic fitness and back strength to lift capacity. Spine. 2002;27(11):1208-12.   DOI
6 Mills JD, Taunton JE, Mills WA. The effect of a 10-week training regimen on lumbo-pelvic stability and athletic performance in female athletes: A randomized-controlled trial. Phys Ther Sport. 2005;6(2):60-6.   DOI
7 Vera-Garcia FJ, Elvira JL, Brown SH, et al. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556-67.   DOI
8 Garcia-Vaquero MP, Moreside JM, Brontons-Gil E, et al. Trunk muscle activation during stabilization exercises with single and double leg support. J Electromyogr Kinesiol. 2012;22(3):398-406.
9 Neumann DA. Kinesiology of the musculoskeletal system; foundation for rehabilitation. Mosby & Elsevier. 2010.
10 Nam H, Jo Y, Kang B, et al. A study on the effect of trunk stabilization program on body balance, lung capacity, muscular activity of healthy adults. Journal of The Korean Society of Integrative Medicine. 2015;3(4):43-51.
11 Richardson C, Hides J, Wilson S, et al. Lumbo-pelvic joint protection against antigravity forces: Motor control and segmental stiffness assessed with magnetic resonance imaging. Journal of gravitational physiology: J Gravit Physiol. 2004;11(2):P119-22.
12 Mooney V, Stoeckart R, Vleeming A. Movement, stability & lumbopelvic pain: Integration of research and therapy: Churchill Livingstone Elsevier; 2007.
13 Mangum LC, Henderson K, Murray KP, et al. Ultrasound assessment of the transverse abdominis during functional movement. J Ultrasound Med. 2018;37(5):1225-31.   DOI
14 Imai A, Kaneoka K, Okubo Y, et al. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J Orthop Sports Phys Ther. 2010;40(6):369-75.   DOI
15 Dj M, editor Instability and stabilization theory and treatment. 2nd Seminar Workbook; 1999.
16 Hodges PW, Van Dillen LR, McGill SM, et al. Integrated clinical approach to motor control interventions in low back and pelvic pain. Churchill Livingstone; 2013.
17 Escamilla RF, Lewis C, Pecson A, et al. Muscle activation among supine, prone, and side position exercises with and without a swiss ball. Sports health. 2016;8(4):372-9.   DOI
18 Kong Y-S, Lee W-J, Park S, et al. The effects of prone bridge exercise on trunk muscle thickness in chronic low back pain patients. J Phys Ther Sci. 2015;27(7):2073-6.   DOI
19 Bjerkefors A, Ekblom MM, Josefsson K, et al. Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther. 2010;15(5):502-7.   DOI
20 Andersen CH, Andersen LL, Zebis MK, et al. Effect of scapular function training on chronic pain in the neck/shoulder region: A randomized controlled trial. J Occup Rehabil. 2014;24(2):316-24.   DOI
21 Hosseinifar M, Akbari M, Behtash H, et al. The effects of stabilization and mckenzie exercises on transverse abdominis and multifidus muscle thickness, pain, and disability: A randomized controlled trial in nonspecific chronic low back pain. J Phys Ther Sci. 2013; 25(12):1541-5.   DOI
22 Jang E-M, Kim M-H, Oh J-S. Effects of a bridging exercise with hip adduction on the emg activities of the abdominal and hip extensor muscles in females. J Phys Ther Sci. 2013;25(9):1147-9.   DOI
23 Kavcic N, Grenier S, McGill SM. Quantifying tissue loads and spine stability while performing commonly prescribed low back stabilization exercises. Spine. 2004;29(20):2319-29.   DOI
24 Stevens VK, Bouche KG, Mahieu NN, et al. Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord. 2006;7(1):1-8.   DOI
25 Hall L, Tsao H, MacDonald D, et al. Immediate effects of co-contraction training on motor control of the trunk muscles in people with recurrent low back pain. J Electromyogr Kinesiol. 2009;19(5):763-73.   DOI
26 McGill SM, Karpowicz A. Exercises for spine stabilization: Motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil. 2009;90(1):118-26.   DOI
27 Hodges P, Richardson C. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res. 1997;114(2):362-70.   DOI
28 Kapandji IA. The physiology of the joint. lower limb. 1987;2.
29 Akima H, Ushiyama J-i, Kubo J, et al. Effect of unloading on muscle volume with and without resistance training. Acta Astronaut. 2007;60(8-9):728-36.   DOI
30 Clay JH. Basic clinical massage therapy: Integrating anatomy and treatment: Lippincott Williams & Wilkins; 2008.
31 Lee D-H, Lee S-Y, Park J-S, et al. The effect of height of hip joint abduction-adduction and slingon transverse abdominis, rectus abdominis, and erector spinae muscles activities during bridging exercise with sling. Journal of korea society for neurotherapy. 2016;20(3):23-6.
32 Yoon S-O. The effect of bridge exercise with hip adduction contraction on core and low limb muscle activity. Department of sport medicine graduate school of sport science, Dankook University; 2017.
33 Faul F, Erdfelder E, Buchner A, et al. Statistical power analyses using g* power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149-60.   DOI
34 Wattanaprakornkul D, Cathers I, Halaki M, et al. The rotator cuff muscles have a direction specific recruitment pattern during shoulder flexion and extension exercises. J Sports Sci Med. 2011;14(5):376-82.   DOI
35 McMeeken J, Beith I, Newham D, et al. The relationship between emg and change in thickness of transversus abdominis. Clin Biomech. 2004;19(4):337-42.   DOI
36 Whittaker JL. Ultrasound imaging of the lateral abdominal wall muscles in individuals with lumbopelvic pain and signs of concurrent hypocapnia. Man Ther. 2008;13(5):404-10.   DOI
37 Ainscough-Potts A-M, Morrissey MC, Critchley D. The response of the transverse abdominis and internal oblique muscles to different postures. Man Ther. 2 006;11(1):54-60.
38 Koppenhaver SL, Hebert JJ, Fritz JM, et al. Reliability of rehabilitative ultrasound imaging of the transversus abdominis and lumbar multifidus muscles. Arch Phys Med Rehabil. 2009;90(1):87-94.   DOI
39 Teyhen DS, Gill NW, Whittaker JL, et al. Rehabilitative ultrasound imaging of the abdominal muscles. J Orthop Sports Phys Ther. 2007;37(8):450-66.   DOI
40 Weinstein S, Herring S, Cole A. Rehabilitation of the patient with spinal pain. Rehabilitation Medicine: Principles and Practice, ed. 1998;3:1423-51.
41 Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. The Journal of physiology. 2000;522(1):165-75.   DOI
42 Urquhart DM, Hodges PW. Differential activity of regions of transversus abdominis during trunk rotation. Eur Spine J. 2005;14(4):393-400.   DOI
43 Schertz M, Zuk L, Zin S, et al. Motor and cognitive development at one-year follow-up in infants with torticollis. Early human development. 2008;84(1):9-14.   DOI
44 Standring S. Gray's anatomy e-book: The anatomical basis of clinical practice: Elsevier Health Sciences; 2021.
45 Richardson CA, Snijders CJ, Hides JA, et al. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine. 2002;27(4):399-405.   DOI
46 Sahrmann S, Azevedo DC, Van Dillen L. Diagnosis and treatment of movement system impairment syndromes. Braz J Phys Ther. 2017;21(6):391-9.   DOI