Browse > Article
http://dx.doi.org/10.5572/KOSAE.2013.29.4.459

Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management  

Hwang, InJo (Department of Environmental Engineering, Daegu University)
Kim, Dong-Sool (Department of Environmental Science and Engineering, Kyung Hee University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.29, no.4, 2013 , pp. 459-476 More about this Journal
Abstract
Receptor models have been rapidly developed to manage the ambient air quality and to establish effective emission reduction strategies. The models are used to identify various emission sources and apportion quantitatively the ambient pollutant mass based on various measured physico-chemical properties of the air pollutants at the receptor site. Many types of receptor models have been applied to estimate source contributions since those provide fundamental information when establishing reasonable environmental policies in Korea and Foreign countries. In this paper, we will introduce the basic concept and principal of the receptor model, various types of existing models with discussing strong and weak points for each model, and performance procedure of PMF model as the most popular model in the world. Further the trends of receptor modeling studies in Korea and other countries were provided. Finally, the improvement directions of the modeling works for the national and local air quality management were suggested in this paper.
Keywords
Air quality management; Receptor models; Research trends of receptor modeling; Source apportionment;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Paatero, P. and U. Tapper (1994) Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111-126.   DOI
2 Paatero, P., P.K. Hopke, B.A. Begum, and S.K. Biswas (2005) A Graphical Diagnostic Method for Assessing the Rotation in Factor Analytical Models of Atmospheric Pollution, Atmos. Environ., 39, 193-201.   DOI   ScienceOn
3 Korean Society for Atmospheric Environment (KOSAE) (2009) A study on arrangement of improvement and complement counterplan for basic plan of metropolitan air quality management, Ministry of Environment.
4 Lee, E., C.K. Chan, and P. Paatero (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong, Atmos. Environ., 33(19), 3201-3212.   DOI   ScienceOn
5 Lee, H.S., C.M. Kang, B.W. Kang, and S.K. Lee (2005) A study on the PM2.5 source characteristics affecting the Seoul area using a chemical mass balance receptor model, Journal of Korean Society for Atmospheric Environment, 21(3), 329-341. (in Korean with English abstract)
6 Lee, T.J. and D.S. Kim (1997) Estimation of source contribution for ambient particulate matters in Suwon area, Journal of Korea Air Pollution Research Association, 13(4), 285-296. (in Korean with English abstract)   과학기술학회마을
7 Lee, T.J., J.B. Hur, S.J. Yi, S.D. Kim, and D.S. Kim (2009) Estimation of PM10 source contributions on three cities in the Metropolitan area by using PMF model, J. Korean Society of Atmospheric Environment, 25(4), 275-288. (in Korean with English abstract)   DOI   ScienceOn
8 Leuchner, M. and B. Rappengluck (2010) VOC source-receptor relationships in Houston during TexAQS-II, Atmos. Environ., 44(33), 4056-4067.   DOI   ScienceOn
9 Liu, W., P.K. Hopke, Y.J. Han, S.M. Yi, T.M. Holsen, S. Cybart, K. Kimberly, and M. Milligan (2003) Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY, Atmos. Environ., 37(36), 4997-5007.   DOI   ScienceOn
10 Malm, W.C. and J.L. Hand (2007) An Examination of the physical and optical properties of aerosols collected in the IMPROVE program, Atmos. Environ., 41, 3407-3427.   DOI   ScienceOn
11 Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States, Journal of Geophysical Research, 99(D1), 1347-1370.   DOI
12 Kim, D.S. and P.K. Hopke (1988a) The classification of individual particles based on computer controlled scanning electron microscopy data, Aerosol Sci. and Tech., 9, 133-151.   DOI
13 Kim, D.S. and P.K. Hopke (1988b) Source apportionment of the El Paso aerosol by particle class balance analysis, Aerosol Sci. and Tech., 9, 221-235.   DOI
14 Kim, D.S. and T.J. Lee (1993) Quantitative source estimation of particulate matters in Suwon area using the target transformation factor analysis based on size segregation scheme, Journal of Korea Air Pollution Research Association, 9(1), 44-50. (in Korean with English abstract)   과학기술학회마을
15 Kim, D.S., H.K. Kim, S.D. Kim, and T.O. Kim (1990a) A study on the distribution of fall-out particles using a receptor model, Journal of Korean Society of Environmental Engineering, 12(1), 1-9. (in Korean with English abstract)
16 Kim, D.S., S.D. Kim, Y.S. Kim, E.B. Shin, and T.J. Lee (1994) Quantitative determination of aerosol contribution in Seoul metropolitan subway stations, J. Korean Society of Environmental Engineering, 16(3), 309-319. (in Korean with English abstract)
17 Kim, K.S., I.J. Hwang, and D.S. Kim (2001) Development of a receptor methodology for quantitative assessment of ambient PM10 sources in Suwon area, Journal of Korean Society for Atmospheric Environment, 17(2), 119-131. (in Korean with English abstract)   과학기술학회마을
18 Kim, E. and P.K. Hopke (2004) Comparison between Conditional Probability Function and Nonparametric Regression for Fine Particle Source Directions, Atmos. Environ., 38, 4667-4673.   DOI   ScienceOn
19 Kim, E., P.K. Hopke, and E.S. Edgerton (2003) Source identification of Atlanta aerosol by positive matrix factorization, J. Air & Waste Manage. Assoc., 53, 731-739.   DOI
20 Kim, G.Y. and M.S. Jeon (1996) SAS Factor Analysis, Freedom academy, p. 35.
21 Hwang, I.J., P.K. Hopke, and J.P. Pinto (2008b) Source apportionment and spatial distributions of coarse particles during the Regional Air Pollution Study, Environ. Sci. & Technol., 42, 3524-3530.   DOI   ScienceOn
22 Hwang, I.J., T.O. Kim, and D.S. Kim (2001) Source identification of PM-10 in Suwon using the method of positive matrix factorization, Journal of Korean Society for Atmospheric Environment, 17(2), 133-145. (in Korean with English abstract)   과학기술학회마을
23 Hwang, I.J., Y.H. Cho, W.G. Choi, H.M. Lee, and T.O. Kim (2008c) Quantitative estimation of PM10 source contribution in Gumi city by the positive matrix factorization model, Journal of Korean Society for Atmospheric Environment, 24(1), 100-107. (in Korean with English abstract)   DOI   ScienceOn
24 Jeon, J.M., D. Hur, and D.S. Kim (2005a) Development of source profiles and estimation of source contribution for VOCs by the chemical mass balance model in the Yeosu Petrochemical Industrial Complex, J. Korean Society of Atmospheric Environment, 21(1), 83-96. (in Korean with English abstract)   과학기술학회마을
25 Kim, D.S. and I.J. Hwang (2002) The origination mechanism of PM10 and methodology of identification for PM10 sources, Air Cleaning Technology, 15(1), 38-53.
26 Jeon, J.M., D. Hur, I.J. Hwang, and D.S. Kim (2005b) Development of the VOC source profile using collinearity test in the Yeosu Petrochemical Complex, J. Korean Society of Atmospheric Environment, 21(3), 315-327. (in Korean with English abstract)
27 Kang, B.W., H.S. Lee, and H.K. Kim (2000) Source identification of fine particle (PM2.5) in Chongju using a chemical mass balance model, Journal of Korean Society for Atmospheric Environment, 16(5), 477-485. (in Korean with English abstract)   과학기술학회마을
28 Kim, D.S. and H.S. Kim (1990) The air quality analysis in underground shopping centers using pattern recognition, Journal of Korea Air Pollution Research Association, 6(1), 1-10. (in Korean with English abstract)   과학기술학회마을
29 Hopke, P.K., D.J. Alpert, and B.A. Roscore (1982) FANTASIA program for target transformation factor analysis to apportion source in environmental samples, Computer & Chemistry, 7(3), 149-155.
30 Hwang, I.J. (2009) Estimation of source apportionment for semi-continuous PM2.5 and identification of location for local point sources at the St. Louis supersite, USA, Journal of Korean Society for Atmospheric Environment, 25(2), 154-166. (in Korean with English abstract)   DOI   ScienceOn
31 Hwang, I.J. (2010) Source identification ana estimation of source apportionment of ambient PM2.5 at western national park site in USA, Journal of Korean Society for Atmospheric Environment, 26(1), 21-33. (in Korean with English abstract)   DOI   ScienceOn
32 Hwang, I.J. and D.S. Kim (1998) Studies on the chemical compositions and distributions of ambient submicron aerosols, Journal of Korea Air Pollution Research Association, 14(1), 11-23. (in Korean with English abstract)
33 Hwang, I.J. and P.K. Hopke (2007) Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site, Atmos. Environ., 41, 506-518.   DOI   ScienceOn
34 Hwang, I.J. and D.S. Kim (2003a) Source identification of ambient PM10 using the PMF model, Journal of Korean Society for Atmospheric Environment, 19(6), 701-717. (in Korean with English abstract)
35 Hwang, I.J. and D.S. Kim (2003b) Estimation of quantitative source contribution of ambient PM10 using the PMF model, Journal of Korean Society for Atmospheric Environment, 19(6), 719-731. (in Korean with English abstract)
36 Hwang, I.J. and P.K. Hopke (2006) Comparison of source apportionments of fine particulate matter at two San Jose STN sites, J. Air & Waste Manage. Assoc., 56, 1287-1300.   DOI   ScienceOn
37 Hwang, I.J., D.S. Kim, and P.K. Hopke (2008a) Estimation of source apportionment of ambient PM2.5 at western coastal IMPROVE site in USA, Journal of Korean Society for Atmospheric Environment, 24(1), 30-42. (in Korean with English abstract)   DOI   ScienceOn
38 Giorio, C., A. Tapparo, M. Dall'Osto, R.M. Harrison, D.C.S. Beddows, C.D. Marco, and E. Nemitz (2012) Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer, Atmos. Environ., 61, 316-326.   DOI   ScienceOn
39 Gordon, G.E. (1988) Receptor models, Environ. Sci. & Technol., 22(10), 1132-1142.   DOI   ScienceOn
40 Henry, R.C. (1997) History and fundamentals of multivariate air quality receptor models, Chemom. Intell. Lab. Syst., 37(1), 37-42.   DOI   ScienceOn
41 Henry, R.C., Y.-S. Chang, and C.H. Spiegelman (2002) Location nearby sources of air pollution by nonparametric regression of atmospheric concentrations on wind direction, Atmos. Environ., 36, 2237-2244.   DOI   ScienceOn
42 Hidy, G.M. and S.K. Friedlander (1972) The nature of the Los Angeles aerosol, Proceedings of the 2nd International Clean Air Congress, Academic Press, New York, 391-404.
43 Heo, J.S. and D.S. Kim (1993) Prediction of high level ozone concentration in Seoul by using multivariate statistical analyses, Journal of Korea Air Pollution Research Association, 9(3), 207-215. (in Korean with English abstract).   과학기술학회마을
44 Heo, J.S. and D.S. Kim (2004a) A new method of ozone forecasting using fuzzy expert and neural network systems, Science of Total Environment, 325, 221-237.   DOI   ScienceOn
45 Heo, J.S., K.H. Kim, and D.S. Kim (2004b) Pattern recognition of high O3 episodes in forecasting daily maximum ozone levels, Terr. Atmos. and Oceanic Sciences, 15(2), 199-220.   DOI
46 Hien, P.D., N.T. Binh, Y. Truong, and N.T. Ngo (1999) Temporal variations of source impacts at the receptor, as derived from air particulate monitoring data in Ho Chi Minh City, Vietnam, Atmos. Environ., 33(19), 3133-3142.   DOI   ScienceOn
47 Hopke, P.K. (2000) A guide to Positive Matrix Factorization, in Workshop on UNMIX and PMF as applied to PM2.5. Edited by R.D. Willis, RTP, NC, EPA 600/ A-00/048.
48 Hopke, P.K. (2003) Recent developments in receptor modeling, J. of Chemometrics, 17, 255-265.   DOI   ScienceOn
49 Anttila, P., P. Paatero, U. Tapper, and O. Jarvinen (1995) Source identification of bulk wet deposition in Finland by positive matrix factorization, Atmos. Environ., 29(14), 1705-1718.   DOI   ScienceOn
50 Blifford, I.H. and G.O. Meeker (1967) A factor analysis model large scale pollution, Atmos. Environ., 1, 147-157.   DOI   ScienceOn
51 Bong, C.K., J.S. Yun, I.J. Hwang, C.R. Kim, and D.S. Kim (2003) Estimation of quantitative source contribution of VOCs in Seoul area, J. Korean Society of Atmospheric Environment, 19(4), 387-396. (in Korean with English abstract)   과학기술학회마을
52 Choi, H.W., I.J. Hwang, S.D. Kim, and D.S. Kim (2004) Determination of source contribution based on aerosol number and mass concentration in the Seoul subway stations, Journal of Korean Society for Atmospheric Environment, 20(1), 17-31. (in Korean with English abstract)   과학기술학회마을
53 Christensen, E.R. and S. Arora (2007) Source apportionment of PAHs in sediments using factor analysis by time records: Application to Lake Michigan, USA, Atmos. Environ., 41, 168-176.
54 Chueinta, W., P.K. Hopke, and P. Paatero (2000) Investigation of sources of atmospheric aerosol at urban and suburban residential area in Thailand by positive matrix factorization, Atmos. Environ., 34(20), 3319-3329.   DOI   ScienceOn
55 Cooper, J.A. and J.G. Watson (1980) Receptor oriented methods of air particulate source apportionment, JAPCA, 30(10), 1116-1125.
56 Draxler, R.R. and G.D. Hess (1997) Description of the HYSPLIT 4 modeling system, NOAA Technical Memorandum ERL ARL-224, NOAA Air Resources Laboratory, Silver Spring, MD.
57 Friedlander, S.K. (1973) Chemical element balances and identification of air pollution sources, Environ. Sci. & Technol., 7(3), 235-240.   DOI   ScienceOn
58 Han, J.S., K.J. Moon, B.J. Kong, S.Y. Ryu, and Y.J. Kim (2004) Size-segregated sources of aerosol estimated by factor analysis - For the measurement using Drum impactor at Gosan, Jeju Island in May 2002, Journal of Korean Society for Atmospheric Environment, 20(5), 685-695. (in Korean with English abstract)   과학기술학회마을
59 Kim, T.O., D.S. Kim, and J.G. Na (1990b) Quantitative source estimation of particulate matters in Pusan area using target transformation factor analysis, Journal of Korea Air Pollution Research Association, 6(2), 135-146. (in Korean with English abstract)   과학기술학회마을
60 Yoon, H.J. and D.S. Kim (1997) Spatial distribution analysis of metallic elements in dustfall using GIS, Journal of Korea Air Pollution Research Association, 13(6), 463-474. (in Korean with English abstract)   과학기술학회마을
61 Watson, J.G., N.F. Robinsin, E.M. Fujita, J.C. Chow, T.G. Pace, C. Lewis, and T. Coulter (1998) CMB8 Applications and Validation Protocol for PM2.5 and VOCs, Desert Research Institute, Document NO. 1808.2D1.
62 Ulbrich, I.M., M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and J.L. Jimenez (2009) Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891-2918.   DOI
63 Watson, J.G. (1979) Chemical element balance receptor model methodology for assessing the source of fine and total particulate matter in Portland, Oregon, Ph.D. Oregon graduate center, Beaverton, OR.
64 Watson, J.G. (1984) Overview of receptor model principles, JAPCA, 34, 619-623.
65 Watson, J.G. and J.C. Chow (2004) Receptor models for air quality management, The Magazine for Environmental Managers, October 2004, 15-24.
66 Watson, J.G., L.W.A. Chen, J.C. Chow, and P. Doraiswamy (2008) Source apportionment: Findings from the U.S. supersites program, J. Air & Waste Manage. Assoc., 58, 265-288.   DOI
67 Winchester, J.W. and G.D. Nifong (1971) Water pollution in Lake Michigan by trace element from aerosol fallout, Water Air and Soil Pollution, 1, 50-64.   DOI
68 Xie, Y., P.K. Hopke, and D. Wienke (1994) Airborne particle classification with a combination of chemical composition and shape index utilizing an adaptive resonance artificial neural network, Environ. Sci. & Technol., 28(11), 1921-1928.   DOI   ScienceOn
69 Yoo, J.S., D.S. Kim, and Y.S. Kim (1995) Quantitative source estimation of PM10 in Seoul area, Journal of Korea Air Pollution Research Association, 11(3), 279-290. (in Korean with English abstract)
70 Zannetti, P. (2005) Air Quality Modeling. Edited by J.G. Watson and J.C. Chow, The EnviroComp Institute and Air & Waste Management Association, 457-458.
71 Zhou, L., P.K. Hopke, and W. Liu (2004) Comparison of two trajectory based models for locating particle sources for two rural New York sites, Atmos. Environ., 38, 1955-1963.   DOI   ScienceOn
72 Prinz, B. and H. Stratmann (1968) The possible use of factor analysis in investigating air quality, Staub-Reinhalt 23, p. 33.
73 Polissar, A.V., P.K. Hopke, and R.D. Poirot (2001) Atmospheric aerosol over Vermont: Chemical composition and sources, Environ. Sci. & Technol., 35(23), 4604-4621.   DOI   ScienceOn
74 Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska, 2. Elemental composition and sources, J. of Geophysical Research, 103(D15), 19045-19057.   DOI
75 Polissar, A.V., P.K. Hopke, P. Paatero, Y.J. Kaufmann, D.K. Hall, B.A. Bodhaine, E.G. Dutton, and J.M. Harris (1999) The aerosol at Barrow, Alaska: long-term trends and source locations, Atmos. Environ., 33, 2441-2458.   DOI   ScienceOn
76 Qin, Y., K. Oduyemi, and L.Y. Chan (2002) Comparative testing of PMF and CFA models, Chemom. Intell. Lab. Syst., 61, 75-87.   DOI   ScienceOn
77 Ramadan, Z., X.H. Song, and P.K. Hopke (2000) Identification of sources of Phoenix aerosol by positive matrix factorization, Air & Waste Manage. Assoc., 50(8), 1308-1320.   DOI   ScienceOn
78 Seoul National University (2005) A study on establishment of risk management plan for monitoring of environmental pollution disease, Ministry of Environment.
79 Severin, K.G., B.A. Roscore, and P.K. Hopke (1983) The use of factor analysis in source determination of particle emissions, Particulate Science and Technology, 1, 183-192.   DOI   ScienceOn
80 Shin, S.A., J.S. Han, and S.D. Kim (2006) Source apportionment and the origin of Asian dust observed in Korea by receptor modeling (CMB), Journal of Korean Society for Atmospheric Environment, 22(2), 157-166. (in Korean with English abstract)
81 Nam, B.H., I.J. Hwang, and D.S. Kim (2002) Pattern classification of PM-10 in the indoor environment using disjoint principal component analysis, Journal of Korean Society for Atmospheric Environment, 18(1), 25-37. (in Korean with English abstract)   과학기술학회마을
82 Sun, Y., Z. Wang, H. Dong, T. Yang, J. Li, X. Pan, P. Chen, and J.T. Jayne (2012) Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250-259.   DOI   ScienceOn
83 Miller, M.S., S.K. Friedlander, and G.M. Hidy (1972) A chemical element balance for the Pasadena aerosol, J. Colloid and Inter. Inter. Science, 39(1), 165-176.   DOI   ScienceOn
84 Moon, K.J., J.S. Han, B.J. Kong, I.R. Jung, S.S. Cliff, T.A. Cahill, and K.D. Perry (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan, Jeju Island during ACE-Asia, Journal of Korean Society for Atmospheric Environment, 22(5), 590-603. (in Korean with English abstract)   과학기술학회마을
85 Ng, N.L., M.R. Canagaratna, J.L. Jimenez, Q. Zhang, I.M. Ulbrich, and D.R. Worsnop (2011) Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. & Technol., 45, 910-916.   DOI   ScienceOn
86 Oh, M.S., T.J. Lee, and D.S. Kim (2011) Quantitative source apportionment of size-segregated particulate matter at urbanized local site in Korea, Aerosol and Air Quality Research, 11, 247-264.
87 Paatero, P. (1997) Least squares formulation of robust nonnegative factor analysis, Chemom. Intell. Lab. Syst., 37, 23-35.   DOI   ScienceOn
88 Paatero, P. and P.K. Hopke (2003) Discarding or downweighting high-noise variables in factor analytic models, Analytica Chimica Acta, 490, 277-289.   DOI   ScienceOn