Browse > Article
http://dx.doi.org/10.5572/KOSAE.2010.26.1.010

Improvement of Atmospheric PM2.5 Levels and Related Premature Deaths in Seoul, Korea  

Bae, Hyun-Joo (National Institute of Food and Drug Safety Evaluation)
Shin, JI-Young (Korea Environment Institute)
Park, Chan-Koo (Research Institute of Public Health and Environment)
Jung, Kweon (Research Institute of Public Health and Environment)
Lee, Sang-Yol (Research Institute of Public Health and Environment)
Kim, Min-Young (Research Institute of Public Health and Environment)
Park, Jeong-Im (Department of Environmental Health Sciences, Soon Chun Hyang University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.26, no.1, 2010 , pp. 10-20 More about this Journal
Abstract
In recent studies, $PM_{2.5}$ has been reported to be more harmful to human health than $PM_{10}$ because it penetrates more deeply into the lung. We estimated $PM_{2.5}$ related health benefits in Seoul from implementing the World Health Organization (WHO)'s guidelines (annual average $10{\mu}g/m^3$, 24-hour average $25{\mu}g/m^3$) and U.S. Environmental Protection Agency (EPA)'s National Ambient Air Quality Standard (annual average $15{\mu}g/m^3$, 24-hour average $35{\mu}g/m^3$). U.S. EPA's Environmental Benefits Mapping and Analysis Program was utilized for the analysis. It was predicted that the attainment of the WHO annual guideline and U.S. EPA's annual standard, relative to the concentration in 2006, would result in reduction of 2,333~2,895 premature deaths and 1,703~2,121 premature deaths, respectively. If the WHO and EPA's daily standard for $PM_{2.5}$ are attained, 1,211~1,394 and 1,012~1,165 premature deaths could be avoided, respectively. Sensitivity analyses indicated that the estimates were robust regardless of air quality simulation methods for attaining the $PM_{2.5}$ goals. This study provides a quantitative approach to evaluate health risks from air pollution as well as to assess the potential health benefits of improving atmospheric $PM_{2.5}$ concentration. Even considering the intrinsic limitations and uncertainties of the analysis, it is an important information to rationalize the enforcement of $PM_{2.5}$ management policies and measures in Seoul, Korea.
Keywords
$PM_{2.5}$; Premature mortality; Health benefits; BenMAP;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Park, J. and H.J. Bae (2006) Assessing the health benefits of the Seoul air quality management plan using Ben- MAP, Korean J. of Environ. Health, 32(6), 571-577.
2 Pope, C.A. 3rd, R.T. Burnett, M.J. Thun, E.E. Calle, D. Ito, K. Krewski, and G.D. Thurston (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 287(9), 1132- 1141.   DOI   ScienceOn
3 Seo, J.-H., E.-H. Ha, B.-E. Lee, H.-S. Park, H. Kim, Y.-C. Hong, and O.-H. Yi (2006) The effect of $PM_{10}$ on respiratory-related admission in Seoul, Korean J. of Atmos. Environ., 22(5), 564-573. (in Korean with English abstract)   과학기술학회마을
4 Schwartz, J. (2003) Daily deaths associated with air pollution in six US cities and short-term mortality displacement in Boston, In: Revised analyses of time-series studies of air pollution and health, Health Effects Institute, Boston, MA, 219-226.
5 Cho, Y.-S., J.-T. Lee, Y.-S. Kim, S.-C. Hong, H. Kim, E.-H. Ha, H.-S. Park, and B.-E. Lee (2003) A time-series study of ambient air pollution in relation to daily mortality in Seoul 1998-2001, Korean J. of Atmos. Environ., 19(6), 625-637. (in Korean with English abstract)   과학기술학회마을
6 Davidson, K., A. Hallberg, D. McCubbin, and B. Hubbell (2007) Analysis of $PM_{2.5}$ using the Environmental Benefits Mapping and Analysis Program (BenMAP), J. Toxicol. Environ. Health, Part A, 70(3-4), 332-346.   DOI   ScienceOn
7 Dominici, F., R.D. Peng, M.L. Bell, L. Pham, A. McDermott, S.L. Zeger, and J.M. Samet (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, JAMA, 295(10), 1127- 1134.   DOI   ScienceOn
8 Eftim, S.E., J.M. Samet, H. Janes, A. McDermott, and F. Dominici (2008) Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort, Epidemiology, 19(2), 209-216.   DOI   ScienceOn
9 Franklin, M., A. Zeka, and J. Schwartz (2007) Association between $PM_{2.5}$ and all-cause and specific-cause mortality in 27 US communities, J. Expo. Sci. Environ. Epidemiol., 17(3), 279-287.   DOI   ScienceOn
10 Franklin, M., P. Koutrakis, and P. Schwartz (2008) The role of particle composition on the association between $PM_{2.5}$ and mortality, Epidemiology, 19(5), 680-689.   DOI   ScienceOn
11 Hubbell, B.J., A. Hallberg, D.R. McCubbin, and E. Post (2005) Health-related benefits of attaining the 8-hr ozone standard, Environ. Health Perspect., 113(1), 73-82.
12 Klemm, R.J. and R. Mason (2003) Replication of reanalysis of harvard Six-city study. In: Revised analyses of time-series studies of air pollution and health, Health Effects Institute, Boston, MA, 165-172.
13 Bae, H.J. and J. Park (2009) Health benefits of improving air quality in the rapidly aging Korean society, Sci. Total Environ., 407(23), 5971-5977.   DOI   ScienceOn
14 Bae, H.J., M.-H. Kim, A.K. Lee, and J. Park (2009) Acute effects of PM10 on asthma hospitalization among children and benefit analysis at four major cities in Korea, Korean J. of Environ. Health, 35(1), 1-10. (in Korean with English abstract)   DOI   ScienceOn
15 Boldo, E., S. Medina, A.Le, Tertre, F. Hurley, H.G. Mücke, F. Ballester, I. Aguilera, and D. Eilstein (2006) Apheis: health impact assessment of long-term exposure to $PM_{2.5}$ in 23 European cities, Eur. J. Epidemiol., 21, 449-458.   DOI   ScienceOn
16 Bell, M.L., D. Davis, L. Cifuentes, A. Cohen, N. Gouveia, L. Grant, C. Green, T. Johnson, J. Rogat, J. Spengler, and G. Thurston (2002) International expert workshop on the analysis of the economic and public health impacts of air pollution: workshop summary, Environ. Health Perspect., 110(11), 1163-1168.   DOI
17 Bell, M.L., D.L. Davis, N. Gouveia, V.H. Borja-Aburto, and L.A. Cifuentes (2006) The avoidable health effects of air pollution in three Latin American cities: Santiago, Sao Paulo, and Mexico City, Environ. Res., 100(3), 431-440.   DOI   ScienceOn
18 Bell, M.L., K. Ebisu, R.D. Peng, J.M. Samet, and F. Dominici (2009) Hospital admissions and chemical composition of fine particle air pollution, Am. J. Respir. Crit. Care Med., 179(12), 1115-1120.   DOI   ScienceOn
19 Cho, Y.-S., H. Kim, J.-T. Lee, Y.-J. Hyun, and Y.-S. Kim (2001) Relationship between exposure to air pollutants and aggravation of childhood asthma: A meta-analysis, Korean J. of Atmos. Environ., 17(5), 425-437. (in Korean with English abstract)   과학기술학회마을
20 Symons, J.M., L. Wang, E. Guallar, E. Howell, F. Dominici, M. Schwab, B.A. Ange, J. Samet, J. Ondov, D. Harrison, and A. Geyh (2006) A case-crossover study of fine particulate matter air pollution and onset of congestive heart failure symptom exacerbation leading to hospitalization, Am. J. Epidemiol., 164(5), 421- 433.   DOI   ScienceOn
21 U. S. Environmental Protection Agency (1999) The benefits and costs of the Clean Air Act 1990 to 2010.
22 U. S. Environmental Protection Agency (2006) National ambient air quality standards for particulate matter.
23 Wong, E.Y., J. Gohlke, W.C. Griffith, S. Farrow, and E.M. Faustman (2004) Assessing the health benefits of air pollution reduction for children, Environ. Health Perspect., 112(2), 226-232.
24 Woodruff, T.J., J.D. Parker, and K.C. Schoendorf (2006) Fine particulate matter ($PM_{2.5}$) air pollution and selected causes of postneonatal infant mortality in California, Environ. Health Perspect., 114(5), 786 -790.   DOI   ScienceOn
25 Yoon, C.S., N.W. Paik, and J.H. Kim (2003) Fume generation and content of total chromium and hexavalent chromium in flux-cored arc welding, Ann. Occup. Hyg., 47(8), 671-680.   DOI   ScienceOn
26 World Health Organization (2003) Health aspects of air pollution with particulate matter, ozone, and nitrogen dioxide.
27 World Health Organization (2004) Meta-analysis of time-series studies and panel studies of Particulate Matter (PM) and Ozone ($O_{3}$).
28 World Health Organization (2006) WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide.
29 Zeger, S.L., F. Dominici, A. McDermott, and J.M. Samet (2008) Mortality in the medicare population and chronic exposure to fine particulate air pollution in urban centers (2000-2005), Environ. Health Perspect., 116(12), 1614-1619.   DOI   ScienceOn
30 Krewski, D.R., R.T. Burnett, M.S. Goldberg, K. Hoover, J. Siemiatycki, M. Jerrett, M. Abrahamowicz, and W.H. White (2000) Reanalysis of the Harvard Six cities study and the American Cancer Society study of particulate air pollution and mortality, Health Effects Institute, Cambridge, p.295.
31 Metzger, K.B., P.E. Tolbert, M. Klein, J.L. Peel, W.D. Flanders, K. Todd, J.A. Mulholland, P.B. Ryan, and H. Frumkin (2004) Ambient air pollution and cardiovascular emergency department visits, Epidemiology, 15(1), 46-56.   DOI   ScienceOn
32 Ostro, B., R. Broadwin, S. Green, W.Y. Feng, and M. Lipsett (2006) Fine particulate air pollution and mortality in nine California counties: results from CALFINE, Environ. Health Perspect., 114(1), 29-33.   DOI   ScienceOn
33 Ostro, B., L. Roth, B. Malig, and M. Marty (2009) The effects of fine particle components on respiratory hospital admissions in children, Environ. Health Perspect., 117(3), 475-480.   DOI   ScienceOn