Browse > Article

Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell  

Kim, Myung-Gil (Gyeonggi-do Public Health and Environment Research Institute)
Shin, Hye-Seoung (Hankyong National University Analysis Center)
Kim, Jae-Hyoun (Department of Health Science, School of Natural Science, Dongduk Women's University)
Publication Information
Molecular & Cellular Toxicology / v.5, no.1, 2009 , pp. 14-22 More about this Journal
Abstract
In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.
Keywords
HeLa cell; LDH; Cytotoxicity; Alkylphenols; QSAR;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Dreiem, A., Ring, A. & Fonnum, F. Organic solventinduced cell death in rat cerebellar granule cells: Structure dependence of c10 hydrocarbons and relationship to reactive oxygen species formation. Neurotoxicology 26:321-330 (2005)   DOI   ScienceOn
2 Hughes, P. J. et al. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca(2+) pumps. Biochem Biophys Res Commun 277:568-574 (2000)   DOI   ScienceOn
3 Boge, G. & Roche, H. Cytotoxicity of phenolic compounds on Dicentrarchus labrax erythrocytes. Bull Environ Contam Toxicol 57:171-178 (1996)   DOI
4 Veith, G. D. & Broderius, S. J. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ Health Perspect 87:207-211 (1990)   DOI
5 Siraki, A. G. et al. Quantitative structure-toxicity relationships by accelerated cytotoxicity mechanism screening. Curr Opin Drug Discov Devel 7:118-125 (2004)   PUBMED
6 Lewis, D. F. & Dickins, M. Quantitative structureactivity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs). J Enzyme Inhib 16:321-337 (2001)   DOI
7 Takahata, Y. et al. Core-Electron Binding Energy (CEBE) as descriptors in Quantitative Structure Activity Relationship (QSAR) analysis of cytotoxicities of a series of simple phenols. QSAR Comb Sci 26:378 (2007)   DOI   ScienceOn
8 Strubelt, O. et al. The toxic and metabolic effects of 23 aliphatic alcohols in the isolated perfused rat liver. Toxicol Sci 49:133-142 (1999)   DOI   ScienceOn
9 Hansch, C. & Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. ACS Professional Reference Book. American Chemical Society 1:557-1037 (1995)
10 Bashford, L. & Knox, P. Membrane-mediated cytotoxicity: From biophysics to medicine. BioEssays 5: 134-135 (2005)   DOI
11 Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors, Wiley-VCH Weinheim, Germany, p. 667 (2000)
12 Todeschini, R. et al. Software for Regression and Classification Models by Genetic Alghorithms. In Nature-inspired Methods in Chemometrics: Genetic Alghortims and Artificial Neural Networks (Leardi, R., ed.), Elsevier 374-385 (2003)
13 Loader, R. J. et al. The cytotoxicity of ortho alkyl substituted 4-X-phenols: a QSAR based on theoretical bond lengths and electron densities. Bioorg Med Chem Lett 16:1249-1254 (2006)   DOI   ScienceOn
14 Haavisto, T. E. et al. Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod Toxicol 17:593-605 (2003)   DOI   ScienceOn
15 Harman, C. et al. Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). Chemosphere 72:1510-1516 (2008)   DOI   ScienceOn
16 Eriksson, L. et al. Modelling the cytotoxicity of halogenated aliphatic hydrocarbons. Quantitative structureactivity relationships for the IC50 to human HeLa cells. Quant Struct-Act Relat 12:124-131 (1993)   DOI   ScienceOn
17 Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84 (2007)   DOI   ScienceOn
18 Decker, T. & Lohmann-Matthes, M. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Meth 15:61-69 (1988)   DOI   ScienceOn
19 Qian, J. et al. Octylphenol induces apoptosis in cultured rat Sertoli cells. Toxicol Lett 166:178-186 (2006)   DOI   ScienceOn
20 Liu, X. et al. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro. Chemosphere 64:1619-1626 (2006)   DOI   ScienceOn
21 Nair-Menon, J. U. et al. Toxic effects of octylphenol on cultured rat and murine splenocytes. Toxicol Appl Pharmacol 139:437-444 (1996)   DOI   ScienceOn
22 Moridani, M. Y. et al. Quantitative structure-toxicity relationships for phenols in isolated rat hepatocytes. Chem Biol Interact 145:213-223 (2003)   DOI   ScienceOn
23 Nakagawa, Y. & Tayama, S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol 74:99-105 (2000)   DOI
24 Consonni, V. et al. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors: 1. Theory of the novel 3D molecular descriptors. Chem Inf Comput Sci 42:682-692 (2002)   DOI   ScienceOn
25 Selassie, C. D. et al. Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structureactivity relationship study. J Med Chem 48:7234-7242 (2005)   DOI   ScienceOn
26 Chan, K. et al. Structure-activity relationships for halobenzene induced cytotoxicity in rat and human hepatoctyes. Chem Biol Interact 165:165-174 (2007)   DOI   ScienceOn
27 Leo, A. J. & Hansch, C. Role of hydrophobic effects in mechanistic QSAR. Perspect Drug Discovery Des 17:1-25 (1999)   DOI   ScienceOn
28 Selassie, C. D. et al. QSAR for the cytotoxicity of 2- alkyl or 2,6-dialkyl, 4-X-phenols: the nature of the radical reaction. J Chem Soc Perkin Trans 2:1112-1117 (2002)   DOI   ScienceOn
29 Cronin, M. T. D. et al. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ Res 13:167-176 (2002)   DOI   ScienceOn
30 Babij, C. & Poe, A. J. Deconstruction of Taft's $\sigma^{\ast}$ parameter: QSAR meets QALE. J Phys Org Chem 17:162-167 (2004)   DOI   ScienceOn
31 Li, H. M. et al. Protection against nonylphenol-induced cell. death by DJ-1 in cultured Japanese medaka (Oryzias latipes) cells. Toxicology 228:229-238 (2006)   DOI   ScienceOn
32 Eisenberg, A. & Eu, B. C. Mechanical spectroscopy: An introductory review. Ann Rev Mater Sci 6:335-359 (1976)   DOI   ScienceOn
33 Lueken, A. et al. Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol Lett 147:35-43 (2004)   DOI   ScienceOn
34 Hansch, C. et al. Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact 127:61-72 (2000)   DOI   ScienceOn
35 O'Brien, P. & Haskins, J. R. In vitro cytotoxicity assessment. Methods Mol Biol 356:415-425 (2007)   DOI
36 Okai, Y. et al. Enhancing effect of the endocrine disruptor para-nonylphenol on the generation of reactive oxygen species in human blood neutrophils. Environ Health Perspect 112:553-660 (2004)   DOI   PUBMED   ScienceOn
37 Kim, S. K. et al. Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci 94:310-321 (2006)   DOI   ScienceOn
38 Okai, Y. et al. Protective effect of antioxidants against para-nonylphenol-induced inhibition of cell growth in Saccharomyces cerevisiae. FEMS Microbiol Lett 185:65-71 (2000)   DOI
39 Escher, B. I. et al. Kinetic model to describe the intrinsic uncoupling activity of substituted phenols in energy transducing membranes. Environ Sci Technol 33:560-570 (1999)   DOI   ScienceOn
40 Hansch, C. et al. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165-195 (1991)   DOI
41 Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694-701 (2007)   DOI   ScienceOn
42 Hemmateenjad, B. et al. A mechanistic QSAR study on the leishmanicidal activity of some 5-substituted- 1,3,4-thiadiazole derivatives. Chemical Biology and Drug Design 69:435-443 (2007)   DOI   ScienceOn
43 Pretorius, E. et al. Ultrastructural effects of low dosage endocrine disrupter chemicals on neural cells of the chicken embryo model. Horm Metab Res 38:639-649 (2006)   DOI   ScienceOn
44 Selassie, C. D. et al. On the toxicity of phenols to fast growing cells. A QSAR model for a radical-based toxicity. J Chem Soc Perkin Trans 2:2729-2733 (1999)   DOI   ScienceOn
45 Konjevic, G. et al. Correction of the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. J Immunol Methods 200:199-201 (1997)   DOI   ScienceOn
46 Muller, M. T. et al. Membrane toxicity of alcohol ethoxylates. Environ Toxicol Chem 18:2767-2774 (1999)   DOI
47 Fotakis, G. & Timbrell, J. A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT, and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171-177 (2005)   DOI   ScienceOn