Browse > Article

A New Mathematical Model for Optimum Production of Neural Stem Cells in Large-scale  

Hossain, S.M. Zakir (Department of Advanced Nano and Bioscience, University of Toyama)
Sultana, Nahid (Department of Mathematics, Kanazawa University)
Babar, S.M. Enayetul (Korean Institute of Science and Technology)
Haki, G.D. (Debub University)
Publication Information
Molecular & Cellular Toxicology / v.3, no.2, 2007 , pp. 77-84 More about this Journal
Abstract
Millions of individuals worldwide are currently afflicted with neurodegenerative disorders such as Parkinson's disease and multiple sclerosis which are caused by the death of specific types of specialized cells in the Central Nervous System (CNS). Recently, Neural Stem Cells (NSCs) are able to replace these dead cells with new functional cells, thereby providing a cure for devastating neural diseases. The clinical use of neural stem cells (NSCs) for the treatment of neurological diseases requires overcoming the scarcity of the initial in vivo NSC population. Thus, we developed a novel 3-dimentional cellular automata model for optimum production of neural stem cells and their derivatives in large scale to treat neurodegenerative disorder patients.
Keywords
Neural Stem Cells; Neurodegenerative disorder; Cellular automata model;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boucher, K., Yakovlev, A.Y., Mayer, P. M. & Noble, M. A stochastic model of temporally regulated generation of oligodendrocytes in cell culture. Math. Biosci. 159:47-78 (1999)   DOI   ScienceOn
2 Sen, A., Kallos, M. S. & Behie, L. A. Effect of hydrodynamics on cultures of mammalian neural stem cells aggregates in suspension bioreactors. Industrial and Engineering Chemistry Research 40: 5350-5357 (2001)   DOI   ScienceOn
3 Viswanathan, S. & Zandstra, P. W. Towards predictive models of stem cell fate. Cytotechnology 41:75- 92 (2003)   DOI   ScienceOn
4 Berna, G., Leon, Q. T. & Martin, F. Stem cells and diabetes. Biomed. Pharmacother. 113:206-212 (2001)
5 Sadiq, T. S. & Gerber, D. A. Stem cells in modern medicine: reality or myth? Journal of Surgical Research 122:280-291 (2004)   DOI   ScienceOn
6 Zorin, A., Mayer, P. M., Noble, M. & Yakovlev, A. Y. Estimation problems associated with stochastic modeling of proliferation and differentiation of O-2A progenitor cells in vitro. Math. Biosci. 167:109-121 (2000)   DOI   ScienceOn
7 Sen, A., Kallos, M. S. & Behie, L. A. New tissue dissociation protocol for scaled-Up production of neural stem cells in suspension bioreactors. Tissue Engineering 10:904-913 (2004)   DOI   ScienceOn
8 Bailey, J. E. & Ollis, D. F. Biochemical engineering fundamentals. Second Edition, McGraw-Hill Company, Toronto (1986)
9 Curry, J. L. & Trentin, J. J. Hemopoietic spleen colony studies. I. Growth and differentiation. Dev. Biol. 15:395-413 (1967)   DOI   ScienceOn
10 Deasy, B. M. et al. Modeling stem cell population growth: incorporating terms for proliferative heterogeneity. Stem Cells 21(5):536-545 (2003)   DOI   ScienceOn
11 Sen, A., Kallos, M. S. & Behie, L. A. Passaging protocols for mammalian neural stem cells in suspension bioreactors. Biotechnology Progress 18(2):337-345 (2002a)   DOI   ScienceOn
12 Blyszczuk, P. & Wobus, A. M. Stem cells and pancreatic differentiation in vitro. J. of Biotechnology 113:3-13 (2004)   DOI   ScienceOn
13 Metcalf, D. & Nicola, N. A. The regulatory factors controlling murine erythropoiesis in vitro. Prog. Clin. Biol. Res. 148:93-105 (1984)
14 Boucher, K. et al. An alternative stochastic model of generation of oligodendrocytes in cell culture. J. Math. Biol. 43:22-36 (2001)   DOI
15 Cabrera, M. E., Saidel, G. M. & Kalhan, S.C. Role of $O_{2}$ in regulation of lactate dynamics during hypoxia: mathematical model and analysis. Ann. Biomed. Eng. 26:1-27 (1998)   DOI   ScienceOn
16 Sen, A., Kallos, M. S. & Behie, L. A. Expansion of mammalian neural stem cells in bioreactors: Effect of power input and medium viscosity. Developmental Brain Research 134(1-2):103-113 (2002b)   DOI   ScienceOn
17 Reynolds, B. A. & Weiss, S. Generation of neurons and sstroctyes from isolated cells of the adult mammalian central nervous system. Science 255:1707-1710 (1992)   DOI
18 Wang, T. Y., Sen, A., Behie, L. A. & Kallos, M. S. Dynamic behaviour of neurospheres in expanding populations of neural precursors. Brain Research 1107:82-96 (2006)   DOI   ScienceOn
19 Yakovlev, A. Y., Mayer, P. M. & Noble, M. A stochastic model of brain cell differentiation in tissue culture. J. Math. Biol. 37:49-60 (1998)   DOI
20 Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Developmental Biology 175:1-13 (1996)   DOI   ScienceOn
21 Gilbertson, J. A., Sen, A., Behie, L. A. & Kallos, M. S. Scaled-up production of mammalian neural precursor cell aggregates in computer-controlled suspension bioreactors. Biotechnology and Bioengineering 94(4):783-792 (2006)   DOI   ScienceOn
22 Sen, A. & Behie, L. A. The development of a medium for the in vitro expansion of mammalian neural stem cells. Canadian Journal of Chemical Engineering 77(5):963-972 (1999)   DOI
23 Zhang, X. W., Audet, J., Piret, J. M. & Li, Y. X. Cell cycle distribution of primitive haematopoietic cells stimulated in vitro and in vivo. Cell. Prolif. 34:321- 330 (2001)   DOI   ScienceOn