Browse > Article

Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans  

Roh, Ji-Yeon (Department of Environmental Engineering, College of Urban Science, University of Seoul)
Park, Sun-Young (Department of Environmental Engineering, College of Urban Science, University of Seoul)
Choi, Jin-Hee (Department of Environmental Engineering, College of Urban Science, University of Seoul)
Publication Information
Molecular & Cellular Toxicology / v.2, no.1, 2006 , pp. 54-59 More about this Journal
Abstract
The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.
Keywords
Caenorhabditis elegans; cadmium; stress-related gene expressions; biomarker; toxicity monitoring; environmental risk assessment;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Willams, P.L. et al. Caenorhabditis elegans as an alternative animal species. J Toxicol Environ Health A. 61, 641-647 (2000)   DOI
2 Reichert, K. & Menzel, R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 61, 229-237 (2005)   DOI   ScienceOn
3 Dhawan, R., Dusenbery, D.B. & Williams, P.L. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A. 58, 451-462 (1999)   DOI
4 Menzel, R., Bogaert, T. & Achazi, R. A systematic gene expression screen of Caenorhabditis elegans Cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys. 395, 158-168 (2001)   DOI   ScienceOn
5 Kwon, J.Y. et al. Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics 83, 600-614 (2004)   DOI   ScienceOn
6 Boyd, W.A. & Williams, P.L. Comparison of the sensitivity of three nematode species to cooper and their utility in aquatic and soil toxicity tests. Environ Toxicol Chem. 22, 2768-2774 (2003)   DOI   ScienceOn
7 Liao, V.H., Dong, J. & Freedman, J.H. Molecular characterization of a novel, Cadmium-inducible gene from the nematode Caenorhabditis elegans. J Biol Chem. 277, 42049-42059 (2002)   DOI   ScienceOn
8 Dong, J., Song, M.O. & Freedman, J.H. Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmiumresponsive gene cdr-1. Biochim Biophys Acta. 1727, 16-26 (2005)   DOI   ScienceOn
9 Anderson, G.L., Boyd, W.A. & Williams, P.L. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem. 20, 833-838 (2001)   DOI
10 Boyd, W.A. & Williams, P.L. Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions. Environ Toxicol Chem. 22, 1100-1106 (2003)   DOI
11 Dhawan, R., Dusenbery, D.B. & Williams, P.L. A comparison of metal-induced lethality and behavioral responses in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 19, 3061-3067 (2000)   DOI
12 Menzel, R., Rodel, M., Kulas, J. & Steinberg, C.E. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch Biochem Biophys. 438, 93-102 (2005)   DOI   ScienceOn
13 Peredney, C.L. & Williams, P.L. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch Environ Contam Toxicol. 39, 113-118 (2000)
14 Tominaga, N., Kohra, S., Iguchi, T. & Arizono, K. A Multi-Generation sublethal assay of phenols using the nematode Caenorhabditis elegans. J Health Sci. 49, 459-463(2003 )   DOI   ScienceOn
15 Anderson, G.L., Cole, R.D. & Williams, P.L. Assessing behavioral toxicity with Caenorhabditis elegnas. Environ Toxicol Chem. 23, 1235-1240 (2004)   DOI   ScienceOn
16 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974)
17 Williams, P.L. & Dusenbery, D.B. Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ Toxicol Chem. 9, 1285-1290 (1990)   DOI
18 Cressman, C.P. III & Williams, P.L. Reference toxicants for toxicity testing using Caenorhabditis elegans in aquatic media. In Dwyer, F.J., Doane, T.R., Hinman, T.R., eds, Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment Vol 6. STP 1317. American Society for Testing and Materials, Philadelphia, PA, pp. 518-532 (1997)
19 Roesijadi, G. Metallothionein induction as a measure of response to metal exposure in aquatic animal. Environ Health Perspect 12, 91-95 (1994)
20 Kohra, S. et al. Effect of Bisphenol A on the feeding behavior of Caenorhabditis elegans. J Health Sci. 48, 93-95 (2002)   DOI   ScienceOn
21 Ura, K. et al. Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci. 48, 583-586 (2002)   DOI   ScienceOn
22 Yoshimi, T. et al. Activation of stress-induced gene by insecticides in the midge, Chironomus yoshimatsui. J Biochem Mol Toxicol. 16, 10-17 (2002)   DOI   ScienceOn