Browse > Article
http://dx.doi.org/10.5051/jpis.2017.47.1.13

Improved accuracy in periodontal pocket depth measurement using optical coherence tomography  

Kim, Sul-Hee (Department of Periodontology, Seoul National University School of Dentistry)
Kang, Se-Ryong (Department of Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology)
Park, Hee-Jung (Department of Periodontology, Seoul National University School of Dentistry)
Kim, Jun-Min (Dental Research Institute, Seoul National University School of Dentistry)
Yi, Won-Jin (Dental Research Institute, Seoul National University School of Dentistry)
Kim, Tae-Il (Department of Periodontology, Seoul National University School of Dentistry)
Publication Information
Journal of Periodontal and Implant Science / v.47, no.1, 2017 , pp. 13-19 More about this Journal
Abstract
Purpose: The purpose of this study was to examine whether periodontal pocket could be satisfactorily visualized by optical coherence tomography (OCT) and to suggest quantitative methods for measuring periodontal pocket depth. Methods: We acquired OCT images of periodontal pockets in a porcine model and determined the actual axial resolution for measuring the exact periodontal pocket depth using a calibration method. Quantitative measurements of periodontal pockets were performed by real axial resolution and compared with the results from manual periodontal probing. Results: The average periodontal pocket depth measured by OCT was $3.10{\pm}0.15mm$, $4.11{\pm}0.17mm$, $5.09{\pm}0.17mm$, and $6.05{\pm}0.21mm$ for each periodontal pocket model, respectively. These values were similar to those obtained by manual periodontal probing. Conclusions: OCT was able to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established regardless of the position of periodontal pocket in the OCT image.
Keywords
Computer-assisted image interpretation; Gingiva; Optical coherence tomography; Periodontal pocket;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kirtane TS, Wagh MS. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol Res Pract 2014;2014:376367.
2 Ferrante G, Presbitero P, Whitbourn R, Barlis P. Current applications of optical coherence tomography for coronary intervention. Int J Cardiol 2013;165:7-16.   DOI
3 Cheng HM, Guitera P. Systematic review of optical coherence tomography usage in the diagnosis and management of basal cell carcinoma. Br J Dermatol 2015;173:1371-80.   DOI
4 Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582-5.   DOI
5 Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol 2013;24:213-21.   DOI
6 Sattler E, Kastle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt 2013;18:061224.   DOI
7 Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239-50.   DOI
8 Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod 2012;38:1269-74.   DOI
9 Ishibashi K, Ozawa N, Tagami J, Sumi Y. Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations. J Dent 2011;39:543-8.   DOI
10 Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent 2010;38:655-65.   DOI
11 Hsieh YS, Ho YC, Lee SY, Lu CW, Jiang CP, Chuang CC, et al. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt 2011;16:071409.   DOI
12 Kao MC, Lin CL, Kung CY, Huang YF, Kuo WC. Miniature endoscopic optical coherence tomography for calculus detection. Appl Opt 2015;54:7419-23.   DOI
13 Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252-9.   DOI
14 Fernandes LO, Mota CC, de Melo LS, da Costa Soares MU, da Silva Feitosa D, Gomes AS. In vivo assessment of periodontal structures and measurement of gingival sulcus with optical coherence tomography: a pilot study. J Biophotonics. Forthcoming 2016.
15 Di Stasio D, Lauritano D, Romano A, Salerno C, Minervini G, Minervini G, et al. In vivo characterization of oral pemphigus vulgaris by optical coherence tomography. J Biol Regul Homeost Agents 2015;29:39-41.
16 Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, et al. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028.   DOI
17 Agrawal P, Sanikop S, Patil S. New developments in tools for periodontal diagnosis. Int Dent J 2012;62:57-64.   DOI
18 Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003;21:1361-7.   DOI
19 Savage A, Eaton KA, Moles DR, Needleman I. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol 2009;36:458-67.   DOI
20 Armitage GC. Clinical evaluation of periodontal diseases. Periodontol 2000 1995;7:39-53.   DOI
21 Grossi SG, Dunford RG, Ho A, Koch G, Machtei EE, Genco RJ. Sources of error for periodontal probing measurements. J Periodontal Res 1996;31:330-6.   DOI
22 Kao RT, Pasquinelli K. Thick vs. thin gingival tissue: a key determinant in tissue response to disease and restorative treatment. J Calif Dent Assoc 2002;30:521-6.
23 Thoma DS, Muhlemann S, Jung RE. Critical soft-tissue dimensions with dental implants and treatment concepts. Periodontol 2000 2014;66:106-18.   DOI
24 Lee A, Fu JH, Wang HL. Soft tissue biotype affects implant success. Implant Dent 2011;20:e38-47.   DOI
25 van der Velden U, de Vries JH. The influence of probing force on the reproducibility of pocket depth measurements. J Clin Periodontol 1980;7:414-20.   DOI
26 Badersten A, Nilveus R, Egelberg J. Reproducibility of probing attachment level measurements. J Clin Periodontol 1984;11:475-85.   DOI
27 Xiang X, Sowa MG, Iacopino AM, Maev RG, Hewko MD, Man A, et al. An update on novel non-invasive approaches for periodontal diagnosis. J Periodontol 2010;81:186-98.   DOI
28 Watts TL. Probing site configuration in patients with untreated periodontitis. A study of horizontal positional error. J Clin Periodontol 1989;16:529-33.   DOI
29 Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai JC, Lin KF, et al. Dental optical coherence tomography. Sensors (Basel) 2013;13:8928-49.   DOI
30 Goodson JM, Haffajee AD, Socransky SS. The relationship between attachment level loss and alveolar bone loss. J Clin Periodontol 1984;11:348-59.   DOI
31 Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991;254:1178-81.   DOI
32 Mota CC, Fernandes LO, Cimoes R, Gomes AS. Non-invasive periodontal probing through fourier-domain optical coherence tomography. J Periodontol 2015;86:1087-94.   DOI