Browse > Article
http://dx.doi.org/10.5051/jpis.2101180059

Comparison of peri-implant marginal bone level changes between tapered and straight implant designs: 5-year follow-up results  

Park, Han (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Moon, Ik-Sang (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Chung, Chooryung (Department of Orthodontics, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Shin, Su-Jung (Department of Conservative Dentistry, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Huh, Jong-Ki (Department of Oral and Maxillofacial Surgery, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Yun, Jeong-Ho (Department of Periodontology, Institute of Oral Bioscience, Jeonbuk National University College of Dentistry)
Lee, Dong-Won (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
Publication Information
Journal of Periodontal and Implant Science / v.51, no.6, 2021 , pp. 422-432 More about this Journal
Abstract
Purpose: The aim of this study was to compare straight and tapered implant designs in terms of marginal bone loss, the modified plaque index (mPI), and the modified bleeding index (mBI) for 5 years after functional loading. Methods: Twelve patients were recruited. Two types of implants were placed adjacent to each other: 1 straight implant and 1 tapered implant. Marginal bone loss, mPI, and mBI were measured every year for 5 years after loading. Results: The straight implants showed 0.2±0.4 mm of marginal bone loss at 5 years after loading, while the tapered implants showed 0.2±0.3 mm of marginal bone loss; this difference was not statistically significant (P=0.833). Our analysis also showed no statistically significant differences in mPI (straight implants: 0.3±0.3 vs. tapered implants: 0.2±0.3; P=0.414) or in mBI (straight implants: 0.3±0.4 vs. tapered implants: 0.2±0.3; P=0.317) at 5 years after prosthesis delivery. Conclusions: Straight and tapered implants showed no significant differences with respect to marginal bone loss, mPI, and mBI for 5 years after loading.
Keywords
Alveolar bone loss; Bone remodeling; Dental implants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim JJ, Lee DW, Kim CK, Park KH, Moon IS. Effect of conical configuration of fixture on the maintenance of marginal bone level: preliminary results at 1 year of function. Clin Oral Implants Res 2010;21:439-44.   DOI
2 Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20.   DOI
3 Waechter J, Madruga MM, Carmo Filho LC, Leite FR, Schinestsck AR, Faot F. Comparison between tapered and cylindrical implants in the posterior regions of the mandible: a prospective, randomized, split-mouth clinical trial focusing on implant stability changes during early healing. Clin Implant Dent Relat Res 2017;19:733-41.   DOI
4 Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-70.   DOI
5 Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;4:1-6.   DOI
6 Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw 2012;50:1-23.
7 Nordin T, Jonsson G, Nelvig P, Rasmusson L. The use of a conical fixture design for fixed partial prostheses. A preliminary report. Clin Oral Implants Res 1998;9:343-7.   DOI
8 Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102:552-74.   DOI
9 Laurell L, Lundgren D. Marginal bone level changes at dental implants after 5 years in function: a metaanalysis. Clin Implant Dent Relat Res 2011;13:19-28.   DOI
10 Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. J Periodontol 2011;82:1061-70.   DOI
11 Glauser R. Implants with on oxidized surface placed predominately in soft bone quality and subjected to immediate occlusal loading: results from an 11-year clinical follow-up. Clin Implant Dent Relat Res 2016;18:429-38.   DOI
12 Xiao JR, Li YF, Guan SM, Song L, Xu LX, Kong L. The biomechanical analysis of simulating implants in function under osteoporotic jawbone by comparing cylindrical, apical tapered, neck tapered, and expandable type implants: a 3-dimensional finite element analysis. J Oral Maxillofac Surg 2011;69:e273-81.   DOI
13 Kokovic V, Jung R, Feloutzis A, Todorovic VS, Jurisic M, Hammerle CH. Immediate vs. early loading of SLA implants in the posterior mandible: 5-year results of randomized controlled clinical trial. Clin Oral Implants Res 2014;25:e114-9.   DOI
14 Corbella S, Del Fabbro M, Taschieri S, De Siena F, Francetti L. Clinical evaluation of an implant maintenance protocol for the prevention of peri-implant diseases in patients treated with immediately loaded full-arch rehabilitations. Int J Dent Hyg 2011;9:216-22.   DOI
15 Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11.   DOI
16 Torroella-Saura G, Mareque-Bueno J, Cabratosa-Termes J, Hernandez-Alfaro F, Ferres-Padro E, CalvoGuirado JL. Effect of implant design in immediate loading. A randomized, controlled, split-mouth, prospective clinical trial. Clin Oral Implants Res 2015;26:240-4.
17 AlFarraj Aldosari A, Anil S, Alasqah M, Al Wazzan KA, Al Jetaily SA, Jansen JA. The influence of implant geometry and surface composition on bone response. Clin Oral Implants Res 2014;25:500-5.
18 Kadkhodazadeh M, Heidari B, Abdi Z, Mollaverdi F, Amid R. Radiographic evaluation of marginal bone levels around dental implants with different designs after 1 year. Acta Odontol Scand 2013;71:92-5.   DOI
19 Hansson S. Implant-abutment interface: biomechanical study of flat top versus conical. Clin Implant Dent Relat Res 2000;2:33-41.   DOI
20 Sargolzaie N, Arab HR, Moghaddam MM. Evaluation of crestal bone resorption around cylindrical and conical implants following 6 months of loading: a randomized clinical trial. Eur J Dent 2017;11:317-22.   DOI
21 Bragger U, Hafeli U, Huber B, Hammerle CH, Lang NP. Evaluation of postsurgical crestal bone levels adjacent to non-submerged dental implants. Clin Oral Implants Res 1998;9:218-24.   DOI
22 Karoussis IK, Kotsovilis S, Fourmousis I. A comprehensive and critical review of dental implant prognosis in periodontally compromised partially edentulous patients. Clin Oral Implants Res 2007;18:669-79.   DOI
23 Mombelli A, Lang NP. Clinical parameters for the evaluation of dental implants. Periodontol 2000 1994;4:81-6.   DOI
24 Wyatt CC, Bryant SR, Avivi-Arber L, Chaytor DV, Zarb GA. A computer-assisted measurement technique to assess bone proximal to oral implants on intraoral radiographs. Clin Oral Implants Res 2001;12:225-9.   DOI
25 Chen SY, Feng Z, Yi X. A general introduction to adjustment for multiple comparisons. J Thorac Dis 2017;9:1725-9.   DOI
26 Wennstrom JL, Ekestubbe A, Grondahl K, Karlsson S, Lindhe J. Implant-supported single-tooth restorations: a 5-year prospective study. J Clin Periodontol 2005;32:567-74.   DOI
27 Mombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987;2:145-51.   DOI
28 Messias A, Nicolau P, Guerra F. Titanium dental implants with different collar design and surface modifications: a systematic review on survival rates and marginal bone levels. Clin Oral Implants Res 2019;30:20-48.   DOI
29 Calvo-Guirado JL, Lopez-Lopez PJ, Perez-Albacete Martinez C, Javed F, Granero-Marin JM, Mate Sanchez de Val JE, et al. Peri-implant bone loss clinical and radiographic evaluation around rough neck and microthread implants: a 5-year study. Clin Oral Implants Res 2018;29:635-43.   DOI
30 Lee DW, Park KH, Moon IS. Dimension of interproximal soft tissue between adjacent implants in two distinctive implant systems. J Periodontol 2006;77:1080-4.   DOI
31 Khayat PG, Milliez SN. Prospective clinical evaluation of 835 multithreaded tapered screw-vent implants: results after two years of functional loading. J Oral Implantol 2007;33:225-31.   DOI
32 Caricasulo R, Malchiodi L, Ghensi P, Fantozzi G, Cucchi A. The influence of implant-abutment connection to peri-implant bone loss: a systematic review and meta-analysis. Clin Implant Dent Relat Res 2018;20:653-64.   DOI
33 Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17 Suppl 2:8-18.   DOI
34 Cardaropoli G, Wennstrom JL, Lekholm U. Peri-implant bone alterations in relation to inter-unit distances. A 3-year retrospective study. Clin Oral Implants Res 2003;14:430-6.   DOI
35 Anitua E, Alkhraisat MH. 15-year follow-up of short dental implants placed in the partially edentulous patient: Mandible Vs maxilla. Ann Anat 2019;222:88-93.   DOI
36 Lang NP, Pjetursson BE, Tan K, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth--implant-supported FPDs. Clin Oral Implants Res 2004;15:643-53.   DOI
37 Malevez C, Hermans M, Daelemans P. Marginal bone levels at Branemark system implants used for single tooth restoration. The influence of implant design and anatomical region. Clin Oral Implants Res 1996;7:162-9.   DOI
38 Elian N, Bloom M, Dard M, Cho SC, Trushkowsky RD, Tarnow D. Effect of interimplant distance (2 and 3 mm) on the height of interimplant bone crest: a histomorphometric evaluation. J Periodontol 2011;82:1749-56.   DOI