Browse > Article
http://dx.doi.org/10.5051/jpis.2018.48.6.373

Effects of various prophylactic procedures on titanium surfaces and biofilm formation  

Di Salle, Anna (Research Institute on Terrestrial Ecosystems, National Research Council)
Spagnuolo, Gianrico (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II)
Conte, Raffaele (Research Institute on Terrestrial Ecosystems, National Research Council)
Procino, Alfredo (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II)
Peluso, Gianfranco (Research Institute on Terrestrial Ecosystems, National Research Council)
Rengo, Carlo (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II)
Publication Information
Journal of Periodontal and Implant Science / v.48, no.6, 2018 , pp. 373-382 More about this Journal
Abstract
Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results: AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.
Keywords
Bacterial biofilm; Peri-implant diseases; Prophylactic procedures; Titanium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song F, Koo H, Ren D. Effects of material properties on bacterial adhesion and biofilm formation. J Dent Res 2015;94:1027-34.   DOI
2 Suarez-Lopez Del Amo F, Yu SH, Wang HL. Non-surgical therapy for peri-implant diseases: a systematic review. J Oral Maxillofac Res 2016;7:e13.
3 Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C 2016;61:965-78.   DOI
4 Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 2005;16:36-43.
5 Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater 2009;88:83-91.
6 Sahm N, Becker J, Santel T, Schwarz F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study. J Clin Periodontol 2011;38:872-8.   DOI
7 Albertini M, Lopez-Cerero L, O'Sullivan MG, Chereguini CF, Ballesta S, Rios V, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis. Clin Oral Implants Res 2015;26:937-41.   DOI
8 Canullo L, Rossetti PH, Penarrocha D. Identification of Enterococcus faecalis and Pseudomonas aeruginosa on and in implants in individuals with peri-implant disease: a cross-sectional study. Int J Oral Maxillofac Implants 2015;30:583-7.   DOI
9 Harris LG, Mead L, Muller-Oberlander E, Richards RG. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res A 2006;78:50-8.
10 Renvert S, Lindahl C, Renvert H, Persson GR. Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implants Res 2008;19:342-7.   DOI
11 Ametrano G, D'Anto V, Di Caprio MP, Simeone M, Rengo S, Spagnuolo G. Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. Int Endod J 2011;44:203-9.   DOI
12 Mehl C, Kern M, Zimmermann A, Harder S, Huth S, Selhuber-Unkel C. Impact of cleaning procedures on adhesion of living cells to three abutment materials. Int J Oral Maxillofac Implants 2017;32:976-84.   DOI
13 Cafiero C, Aglietta M, Iorio-Siciliano V, Salvi GE, Blasi A, Matarasso S. Implant surface roughness alterations induced by different prophylactic procedures: an in vitro study. Clin Oral Implants Res 2017;28:e16-20.   DOI
14 Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 2016;34:379-88.   DOI
15 Spagnuolo G, Ametrano G, D'Anto V, Rengo C, Simeone M, Riccitiello F, et al. Effect of autoclaving on the surfaces of TiN-coated and conventional nickel-titanium rotary instruments. Int Endod J 2012;45:1148-55.   DOI
16 D'Anto V, Rongo R, Ametrano G, Spagnuolo G, Manzo P, Martina R, et al. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod 2012;82:922-8.   DOI
17 Gallardo-Moreno AM, Pacha-Olivenza MA, Fernandez-Calderon MC, Perez-Giraldo C, Bruque JM, Gonzalez-Martin ML. Bactericidal behaviour of Ti6Al4V surfaces after exposure to UV-C light. Biomaterials 2010;31:5159-68.   DOI
18 Rongo R, Ametrano G, Gloria A, Spagnuolo G, Galeotti A, Paduano S, et al. Effects of intraoral aging on surface properties of coated nickel-titanium archwires. Angle Orthod 2014;84:665-72.   DOI
19 Mandrich L, Cerreta M, Manco G. An engineered version of human PON2 opens the way to understand the role of its post-translational modifications in modulating catalytic activity. PLoS One 2015;10:e0144579.   DOI
20 Guillemot F, Prima F, Tokarev VN, Belin C, Porte-Durrieu MC, Gloriant T, et al. Ultraviolet laser surface treatment for biomedical applications of ${\beta}$ titanium alloys: morphological and structural characterization. Appl Phys, A Mater Sci Process 2003;77:899-904.   DOI
21 Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 1990;61:485-90.   DOI
22 Mengel R, Buns CE, Mengel C, Flores-de-Jacoby L. An in vitro study of the treatment of implant surfaces with different instruments. Int J Oral Maxillofac Implants 1998;13:91-6.
23 Hallmon WW, Waldrop TC, Meffert RM, Wade BW. A comparative study of the effects of metallic, nonmetallic, and sonic instrumentation on titanium abutment surfaces. Int J Oral Maxillofac Implants 1996;11:96-100.
24 Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants 1996;11:169-78.
25 Louropoulou A, Slot DE, Van der Weijden FA. Titanium surface alterations following the use of different mechanical instruments: a systematic review. Clin Oral Implants Res 2012;23:643-58.   DOI
26 Bennani V, Hwang L, Tawse-Smith A, Dias GJ, Cannon RD. Effect of air-polishing on titanium surfaces, biofilm removal, and biocompatibility: a pilot study. BioMed Res Int 2015;2015:491047.
27 Albrektsson T, Buser D, Chen ST, Cochran D, DeBruyn H, Jemt T, et al. Statements from the Estepona consensus meeting on peri-implantitis, February 2-4, 2012. Clin Implant Dent Relat Res 2012;14:781-2.   DOI
28 Salvi GE, Cosgarea R, Sculean A. Prevalence and mechanisms of peri-implant diseases. J Dent Res 2017;96:31-7.   DOI
29 Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol 2015;42 Suppl 16:S158-71.   DOI
30 Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008;35 Suppl:286-91.   DOI
31 Chenicheri S, R U, Ramachandran R, Thomas V, Wood A. Insight into oral biofilm: primary, secondary and residual caries and phyto-challenged solutions. Open Dent J 2017;11:312-33.   DOI
32 Wade WG. The oral microbiome in health and disease. Pharmacol Res 2013;69:137-43.   DOI
33 Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect 2007;13 Suppl 4:3-10.   DOI
34 Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers 2017;3:17030.   DOI
35 Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K, Derks J, et al. Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol 2015;42 Suppl 16:S152-7.   DOI
36 Salvi GE, Ramseier CA. Efficacy of patient-administered mechanical and/or chemical plaque control protocols in the management of peri-implant mucositis. A systematic review. J Clin Periodontol 2015;42 Suppl 16:S187-201.   DOI
37 Larsen T, Fiehn NE. Dental biofilm infections - an update. APMIS 2017;125:376-84.   DOI
38 Lin NJ. Biofilm over teeth and restorations: what do we need to know? Dent Mater 2017;33:667-80.   DOI
39 Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009;24:616-26.
40 Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010;89:657-65.   DOI