Browse > Article
http://dx.doi.org/10.5051/jpis.2016.46.5.350

Increased osteoinductivity and mineralization by minimal concentration of bone morphogenetic protein-2 loaded onto biphasic calcium phosphate in a rabbit sinus  

Kim, Jae-Shin (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
Cha, Jae-Kook (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
Cho, Kyoo-Sung (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
Publication Information
Journal of Periodontal and Implant Science / v.46, no.5, 2016 , pp. 350-359 More about this Journal
Abstract
Purpose: The purpose of the present study was to evaluate the effectiveness of a minimal concentration of bone morphogenetic protein-2 (BMP-2) in terms of quantitative and qualitative analyses of newly formed bone in a rabbit maxillary sinus model. Methods: In 7 rabbits, sinus windows were prepared bilaterally. Biphasic calcium phosphate (BCP) loaded with 0.05 mg/mL BMP-2 was grafted into one sinus (the BMP group) and saline-soaked BCP was placed into the other (the control group) in each animal. The animals were allowed an 8-week healing period before being sacrificed. Specimens including the augmented area and surrounding tissues were then removed and evaluated both radiographically and histologically. Results: There was a difference in the mineralization of new bone between the groups. In the BMP group, the greater part of the new bone consisted of mature lamellar bone with an evident trabecular pattern, whereas the control group showed mostly woven bone, consisting only partially of lamellar bone. Histometrically, the area of new bone was significantly greater ($4.55{\pm}1.35mm^2$ vs. $2.99{\pm}0.86mm^2$) in the BMP group than in the control group (P<0.05); however, the total augmentation volumes were not significantly different between the groups. Conclusions: Within the limitations of this study, it can be suggested that a minimal concentration of BMP-2 (0.05 mg/mL) had an osteoinductive effect with accelerated mineralization in a rabbit sinus model using a BCP carrier.
Keywords
Bone morphogenetic proteins; Physiologic calcification; Hydroxyapatite-beta tricalcium phosphate; Sinus floor augmentation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim JS, Cha JK, Cho AR, Kim MS, Lee JS, Hong JY, et al. Acceleration of bone regeneration by Bmp-2-loaded collagenated biphasic calcium phosphate in rabbit sinus. Clin Implant Dent Relat Res 2015;17:1103-13.   DOI
2 LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 2003;14:201-9.   DOI
3 Lim HC, Zhang ML, Lee JS, Jung UW, Choi SH. Effect of different hydroxyapatite:beta-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int J Oral Maxillofac Implants 2015;30:65-72.   DOI
4 Mangano C, Sinjari B, Shibli JA, Mangano F, Hamisch S, Piattelli A, et al. A human clinical, histological, histomorphometrical, and radiographical study on biphasic HA-beta-TCP 30/70 in maxillary sinus augmentation. Clin Implant Dent Relat Res 2015;17:610-8.   DOI
5 Choi Y, Lee JS, Kim YJ, Kim MS, Choi SH, Cho KS, et al. Recombinant human bone morphogenetic protein-2 stimulates the osteogenic potential of the Schneiderian membrane: a histometric analysis in rabbits. Tissue Eng Part A 2013;19:1994-2004.   DOI
6 Asai S, Shimizu Y, Ooya K. Maxillary sinus augmentation model in rabbits: effect of occluded nasal ostium on new bone formation. Clin Oral Implants Res 2002;13:405-9.   DOI
7 Brunner E, Langer F. Nonparametric analysis of ordered categorical data in designs with longitudinal observations and small sample sizes. Biom J 2000;42:663-75.   DOI
8 Torrecillas-Martinez L, Galindo-Moreno P, Avila-Ortiz G, Ortega-Oller I, Monje A, Hernandez-Cortes P, et al. Significance of the immunohistochemical expression of bone morphogenetic protein-4 in bone maturation after maxillary sinus grafting in humans. Clin Implant Dent Relat Res 2016;18:717-24.   DOI
9 Hong JY, Kim MS, Lim HC, Lee JS, Choi SH, Jung UW. A high concentration of recombinant human bone morphogenetic protein-2 induces low-efficacy bone regeneration in sinus augmentation: a histomorphometric analysis in rabbits. Clin Oral Implants Res. Forthcoming 2015.
10 Boden SD, Kang J, Sandhu H, Heller JG. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976) 2002;27:2662-73.   DOI
11 Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett 2009;31:1825-35.   DOI
12 Yon J, Lee JS, Lim HC, Kim MS, Hong JY, Choi SH, et al. Pre-clinical evaluation of the osteogenic potential of bone morphogenetic protein-2 loaded onto a particulate porcine bone biomaterial. J Clin Periodontol 2015;42:81-8.   DOI
13 Kim MS, Kwon JY, Lee JS, Song JS, Choi SH, Jung UW. Low-dose recombinant human bone morphogenetic protein-2 to enhance the osteogenic potential of the Schneiderian membrane in the early healing phase: in vitro and in vivo studies. J Oral Maxillofac Surg 2014;72:1480-94.   DOI
14 Kenley RA, Yim K, Abrams J, Ron E, Turek T, Marden LJ, et al. Biotechnology and bone graft substitutes. Pharm Res 1993;10:1393-401.   DOI
15 Jung RE, Weber FE, Thoma DS, Ehrbar M, Cochran DL, Hammerle CH. Bone morphogenetic protein-2 enhances bone formation when delivered by a synthetic matrix containing hydroxyapatite/tricalciumphosphate. Clin Oral Implants Res 2008;19:188-95.   DOI
16 Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, et al. Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J Biomed Mater Res A 2012;100:3304-13.
17 Jang JW, Yun JH, Lee KI, Jang JW, Jung UW, Kim CS, et al. Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:480-7.   DOI
18 Park JC, Kim JC, Kim BK, Cho KS, Im GI, Kim BS, et al. Dose- and time-dependent effects of recombinant human bone morphogenetic protein-2 on the osteogenic and adipogenic potentials of alveolar bone-derived stromal cells. J Periodontal Res 2012;47:645-54.   DOI
19 Lim HC, Hong JY, Lee JS, Jung UW, Choi SH. Late-term healing in an augmented sinus with different ratios of biphasic calcium phosphate: a pilot study using a rabbit sinus model. J Periodontal Implant Sci 2016;46:57-69.   DOI
20 Kim MS, Lee JS, Shin HK, Kim JS, Yun JH, Cho KS. Prospective randomized, controlled trial of sinus grafting using Escherichia-coli-produced rhBMP-2 with a biphasic calcium phosphate carrier compared to deproteinized bovine bone. Clin Oral Implants Res 2015;26:1361-8.   DOI
21 Choi Y, Yun JH, Kim CS, Choi SH, Chai JK, Jung UW. Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: a radiographic and histologic analysis. Clin Oral Implants Res 2012;23:682-9.   DOI