Browse > Article
http://dx.doi.org/10.5051/jpis.2013.43.1.3

Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens  

Ji, Suk (Department of Periodontology, Korea University Anam Hospital)
Choi, Youngnim (Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry)
Publication Information
Journal of Periodontal and Implant Science / v.43, no.1, 2013 , pp. 3-11 More about this Journal
Abstract
Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.
Keywords
Epithelial cells; Host-pathogen interactions; Immune evasion; Neutrophils; Perodontitis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol 2000 2004;36:14-26.   DOI   ScienceOn
2 Dye BA. Global periodontal disease epidemiology. Periodontol 2000 2012;58:10-25.   DOI   ScienceOn
3 Blaizot A, Vergnes JN, Nuwwareh S, Amar J, Sixou M. Periodontal diseases and cardiovascular events: meta-analysis of observational studies. Int Dent J 2009;59:197-209.
4 Manjunath BC, Praveen K, Chandrashekar BR, Rani RM, Bhalla A. Periodontal infections: a risk factor for various systemic diseases. Natl Med J India 2011;24:214-9.
5 Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 1991;26(3 Pt 2):230-42.   DOI
6 Matthews JB, Wright HJ, Roberts A, Cooper PR, Chapple IL. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin Exp Immunol 2007;147:255-64.
7 Shaddox L, Wiedey J, Bimstein E, Magnuson I, Clare-Salzler M, Aukhil I, et al. Hyper-responsive phenotype in localized aggressive periodontitis. J Dent Res 2010;89:143-8.   DOI   ScienceOn
8 Feng Z, Weinberg A. Role of bacteria in health and disease of periodontal tissues. Periodontol 2000 2006;40:50-76.   DOI   ScienceOn
9 Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32.   DOI   ScienceOn
10 Socransky SS, Haffajee AD. Periodontal Infections. In: Lindhe J, Karring T, Lang NP, editors. Clinical periodontology and implant dentistry. 5th ed. Oxford: Blackwell Munksgaard; 2008. p.207-67.
11 Swindle EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches. J Allergy Clin Immunol 2009;124:23-34.   DOI
12 Franke WW, Pape UF. Diverse types of junctions containing tight junction proteins in stratified mammalian epithelia. Ann N Y Acad Sci 2012;1257:152-7.   DOI   ScienceOn
13 Hatakeyama S, Yaegashi T, Oikawa Y, Fujiwara H, Mikami T, Takeda Y, et al. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia. J Periodontal Res 2006;41:322-8.   DOI   ScienceOn
14 Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 2005;7:119-33.
15 Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006;18:24-30.   DOI   ScienceOn
16 Marshall RI. Gingival defensins: linking the innate and adaptive immune responses to dental plaque. Periodontol 2000 2004;35:14-20.   DOI   ScienceOn
17 Chung WO, Dommisch H, Yin L, Dale BA. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 2007;13:3073-83.   DOI   ScienceOn
18 Defraia E, Marinelli A. Oral manifestations of congenital neutropenia or Kostmann syndrome. J Clin Pediatr Dent 2001;26:99-102.
19 Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 2002;360:1144-9.   DOI   ScienceOn
20 Page RC. Gingivitis. J Clin Periodontol 1986;13:345-59.   DOI
21 Dixon DR, Bainbridge BW, Darveau RP. Modulation of the innate immune response within the periodontium. Periodontol 2000 2004;35:53-74.   DOI   ScienceOn
22 Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004;22:181-215.   DOI   ScienceOn
23 Carrassi A, Abati S, Santarelli G, Vogel G. Periodontitis in a patient with chronic neutropenia. J Periodontol 1989;60: 352-7.   DOI
24 Cainciola LJ, Genco RJ, Patters MR, McKenna J, van Oss CJ. Defective polymorphonuclear leukocyte function in a human periodontal disease. Nature 1977;265:445-7.   DOI   ScienceOn
25 Delcourt-Debruyne EM, Boutigny HR, Hildebrand HF. Features of severe periodontal disease in a teenager with Chédiak-Higashi syndrome. J Periodontol 2000;71:816-24.   DOI   ScienceOn
26 Inaloz HS, Harman M, Akdeniz S, Inaloz SS, Isik AG. Atypical familial Papillon-Lefevre syndrome. J Eur Acad Dermatol Venereol 2001;15:48-50.   DOI   ScienceOn
27 Perez HD, Kelly E, Elfman F, Armitage G, Winkler J. Defective polymorphonuclear leukocyte formyl peptide recep-tor(s) in juvenile periodontitis. J Clin Invest 1991;87:971-6.   DOI   ScienceOn
28 Raber-Durlacher JE, Epstein JB, Raber J, van Dissel JT, van Winkelhoff AJ, Guiot HF, et al. Periodontal infection in cancer patients treated with high-dose chemotherapy. Support Care Cancer 2002;10:466-73.   DOI   ScienceOn
29 Brissette CA, Simonson LG, Lukehart SA. Resistance to human beta-defensins is common among oral treponemes. Oral Microbiol Immunol 2004;19:403-7.   DOI   ScienceOn
30 Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray PB Jr, et al. Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother 2001;45:3216-9.   DOI   ScienceOn
31 Tanaka D, Miyasaki KT, Lehrer RI. Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. Oral Microbiol Immunol 2000;15:226-31.   DOI   ScienceOn
32 Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 2004;42: 1024-9.   DOI
33 Nishimura E, Eto A, Kato M, Hashizume S, Imai S, Nisizawa T, et al. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol 2004;48:85-7.   DOI
34 Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, et al. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 2005;55:888-96.   DOI   ScienceOn
35 Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol 2000;27:648-57.   DOI   ScienceOn
36 Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44.   DOI   ScienceOn
37 Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res 2007;42:410-9.   DOI   ScienceOn
38 Lee W, Aitken S, Sodek J, McCulloch CA. Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. J Periodontal Res 1995;30:23-33.   DOI   ScienceOn
39 Liu RK, Cao CF, Meng HX, Gao Y. Polymorphonuclear neutrophils and their mediators in gingival tissues from generalized aggressive periodontitis. J Periodontol 2001;72:1545-53.   DOI   ScienceOn
40 Gainet J, Chollet-Martin S, Brion M, Hakim J, Gougerot-Pocidalo MA, Elbim C. Interleukin-8 production by polymorphonuclear neutrophils in patients with rapidly progressive periodontitis: an amplifying loop of polymorphonuclear neutrophil activation. Lab Invest 1998;78:755-62.
41 Sheikhi M, Gustafsson A, Jarstrand C. Cytokine, elastase and oxygen radical release by Fusobacterium nucleatum-activated leukocytes: a possible pathogenic factor in periodontitis. J Clin Periodontol 2000;27:758-62.   DOI   ScienceOn
42 Katsuragi H, Ohtake M, Kurasawa I, Saito K. Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative stress on PMNs during phagocytosis of periodontopathic bacteria. Odontology 2003;91:13-8.   DOI
43 Sheikhi M, Bouhafs RK, Hammarström KJ, Jarstrand C. Lipid peroxidation caused by oxygen radicals from Fusobacterium-stimulated neutrophils as a possible model for the emergence of periodontitis. Oral Dis 2001;7:41-6.
44 Ding Y, Uitto VJ, Haapasalo M, Lounatmaa K, Konttinen YT, Salo T, et al. Membrane components of Treponema denticola trigger proteinase release from human polymorphonuclear leukocytes. J Dent Res 1996;75:1986-93.   DOI   ScienceOn
45 Ding Y, Haapasalo M, Kerosuo E, Lounatmaa K, Kotiranta A, Sorsa T. Release and activation of human neutrophil matrix metallo- and serine proteinases during phagocytosis of Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola. J Clin Periodontol 1997; 24:237-48.   DOI   ScienceOn
46 Yamazaki K, Polak B, Bird PS, Gemmell E, Hara K, Seymour GJ. Effects of periodontopathic bacteria on IL-1 and IL-1 inhibitor production by human polymorphonuclear neutrophils. Oral Microbiol Immunol 1989;4:193-8.
47 Weinberg A, Krisanaprakornkit S, Dale BA. Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 1998;9:399-414.   DOI   ScienceOn
48 Yoshimura A, Hara Y, Kaneko T, Kato I. Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res 1997; 32:279-86.   DOI   ScienceOn
49 Shin J, Ji S, Choi Y. Ability of oral bacteria to induce tissue-destructive molecules from human neutrophils. Oral Dis 2008;14:327-34.   DOI   ScienceOn
50 Dale BA. Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000 2002;30:70-8.   DOI   ScienceOn
51 Dale BA, Kimball JR, Krisanaprakornkit S, Roberts F, Robinovitch M, O'Neal R, et al. Localized antimicrobial peptide expression in human gingiva. J Periodontal Res 2001; 36:285-94.   DOI   ScienceOn
52 Ji S, Kim Y, Min BM, Han SH, Choi Y. Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res 2007;42: 503-10.   DOI   ScienceOn
53 Darveau RP, Belton CM, Reife RA, Lamont RJ. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun 1998;66:1660-5.
54 Huang GT, Kim D, Lee JK, Kuramitsu HK, Haake SK. Interleukin-8 and intercellular adhesion molecule 1 regulation in oral epithelial cells by selected periodontal bacteria: multiple effects of Porphyromonas gingivalis via antagonistic mechanisms. Infect Immun 2001;69:1364-72.   DOI   ScienceOn
55 Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999;286:525-8.   DOI   ScienceOn
56 Ye Z, Ting JP. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 2008;20:3-9.   DOI   ScienceOn
57 Froy O. Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell Microbiol 2005;7:1387-97.   DOI   ScienceOn
58 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801.   DOI   ScienceOn
59 Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552-9.   DOI   ScienceOn
60 Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009;10:266-72.   DOI   ScienceOn
61 Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007;448: 501-5.   DOI   ScienceOn
62 Ji S, Shin JE, Kim YS, Oh JE, Min BM, Choi Y. Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by fusobacterium nucleatum in gingival epithelial cells. Infect Immun 2009;77:1044-52.   DOI   ScienceOn
63 Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 2000;68:2907-15.   DOI   ScienceOn
64 Peyret-Lacombe A, Brunel G, Watts M, Charveron M, Duplan H. TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. Cytokine 2009;46:201-10.   DOI   ScienceOn
65 Chung WO, Hansen SR, Rao D, Dale BA. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol 2004;173:5165-70.   DOI
66 Lu Q, Darveau RP, Samaranayake LP, Wang CY, Jin L. Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra- and penta-acylated lipid A structures. Innate Immun 2009;15:325-35.   DOI   ScienceOn
67 Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 2004;72:5041-51.   DOI   ScienceOn
68 Hashimoto M, Asai Y, Ogawa T. Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol 2004;16:1431-7.   DOI   ScienceOn
69 Shin JE, Kim YS, Oh JE, Min BM, Choi Y. Treponema denticola suppresses expression of human {beta}-defensin-3 in gingival epithelial cells through inhibition of the toll-like receptor 2 axis. Infect Immun 2010;78:672-9.   DOI   ScienceOn
70 Shin JE, Choi Y. Treponema denticola suppresses expression of human beta-defensin-2 in gingival epithelial cells through inhibition of TNFalpha production and TLR2 activation. Mol Cells 2010;29:407-12.   DOI   ScienceOn
71 Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, et al. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 2007;104:18631-5.   DOI   ScienceOn
72 Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene 2001;263: 211-8.   DOI   ScienceOn
73 Lu Q, Samaranayake LP, Darveau RP, Jin L. Expression of human beta-defensin-3 in gingival epithelia. J Periodontal Res 2005;40:474-81.   DOI   ScienceOn
74 Chung WO, Dale BA. Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 2004;72:352-8.   DOI   ScienceOn
75 Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes. Infect Immun 2006;74:6847-54.   DOI   ScienceOn
76 Krisanaprakornkit S, Kimball JR, Dale BA. Regulation of human beta-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-kappaB transcription factor family. J Immunol 2002;168:316-24.   DOI
77 Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect Immun 2001;69:7387-95.   DOI   ScienceOn
78 Kim Y, Jo AR, Jang da H, Cho YJ, Chun J, Min BM, et al. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells. Immunol Cell Biol 2012;90:655-63.   DOI   ScienceOn
79 Mikolajczyk-Pawlinska J, Travis J, Potempa J. Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett 1998;440:282-6.   DOI   ScienceOn
80 Deng QD, Han Y, Xia X, Kuramitsu HK. Effects of the oral spirochete Treponema denticola on interleukin-8 expression from epithelial cells. Oral Microbiol Immunol 2001; 16:185-7.   DOI   ScienceOn
81 Shin J, Choi Y. The fate of Treponema denticola within human gingival epithelial cells. Mol Oral Microbiol 2012; 27:471-82.   DOI   ScienceOn
82 Hajishengallis G, Wang M, Liang S, Triantafilou M, Triantafilou K. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci U S A 2008;105:13532-7.   DOI   ScienceOn
83 Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol 2008;6:132-42.   DOI   ScienceOn
84 Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 2009;7:355-66.   DOI   ScienceOn
85 Liang S, Krauss JL, Domon H, McIntosh ML, Hosur KB, Qu H, et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J Immunol 2011; 186:869-77.   DOI   ScienceOn
86 Hajishengallis G, Shakhatreh MA, Wang M, Liang S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J Immunol 2007;179:2359-67.   DOI