Browse > Article
http://dx.doi.org/10.5051/jpis.2011.41.6.263

A comprehensive review of techniques for biofunctionalization of titanium  

Hanawa, Takao (Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University)
Publication Information
Journal of Periodontal and Implant Science / v.41, no.6, 2011 , pp. 263-272 More about this Journal
Abstract
A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and nonstoichiometric $TiO_2$. In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.
Keywords
Electroplating; Immobilization; Titanium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamamichi N, Pugdee K, Chang WJ, Lee SY, Yoshinari M, Hayakawa T, et al. Gene expression monitoring in osteoblasts on titanium coated with fibronectin-derived peptide. Dent Mater J 2008;27:744-50.   DOI   ScienceOn
2 Urist MR. Bone: formation by autoinduction. Science 1965;150:893-9.   DOI
3 Lee YM, Nam SH, Seol YJ, Kim TI, Lee SJ, Ku Y, et al. Enhanced bone augmentation by controlled release of recombinant human bone morphogenetic protein-2 from bioabsorbable membranes. J Periodontol 2003;74:865-72.   DOI   ScienceOn
4 Wikesjo UM, Lim WH, Thomson RC, Cook AD, Wozney JM, Hardwick WR. Periodontal repair in dogs: evaluation of a bioabsorbable space-providing macroporous membrane with recombinant human bone morphogenetic protein-2. J Periodontol 2003;74:635-47.   DOI   ScienceOn
5 Seol YJ, Park YJ, Lee SC, Kim KH, Lee JY, Kim TI, et al. Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 2006;77:599-607.
6 Puleo DA, Kissling RA, Sheu MS. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 2002;23:2079-87.   DOI   ScienceOn
7 Gawalt ES, Avaltroni MJ, Koch N, Schwartz J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir 2001;17:5736-8.   DOI   ScienceOn
8 Verrier S, Pallu S, Bareille R, Jonczyk A, Meyer J, Dard M, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 2002;23:585-96.   DOI   ScienceOn
9 Reyes CD, Petrie TA, Burns KL, Schwartz Z, García AJ. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 2007;28:3228-35.   DOI   ScienceOn
10 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673-87.   DOI   ScienceOn
11 Bagno A, Piovan A, Dettin M, Chiarion A, Brun P, Gambaretto R, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone 2007;40:693-9.   DOI   ScienceOn
12 Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 2005;26:3521-6.   DOI   ScienceOn
13 Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 2006;27:5561-71.   DOI   ScienceOn
14 Chang WJ, Ou KL, Lee SY, Chen JY, Abiko Y, Lin CT, et al. Type I collagen grafting on titanium surfaces using lowtemperature glow discharge. Dent Mater J 2008;27:340-6.   DOI   ScienceOn
15 Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998;40:324-35.   DOI   ScienceOn
16 Nagai M, Hayakawa T, Fukatsu A, Yamamoto M, Fukumoto M, Nagahama F, et al. In vitro study of collagen coating of titanium implants for initial cell attachment. Dent Mater J 2002;21:250-60.   DOI   ScienceOn
17 Viornery C, Guenther HL, Aronsson BO, Pechy P, Descouts P, Gratzel M. Osteoblast culture on polished titanium disks modified with phosphonic acids. J Biomed Mater Res 2002;62:149-55.   DOI   ScienceOn
18 Kamata H, Suzuki S, Tanaka Y, Tsutsumi Y, Doi H, Nomura N, et al. Effects of pH, potential, and deposition time on the durability of collagen electrodeposited to titanium. Mater Trans 2011;52:81-9.   DOI   ScienceOn
19 Pugdee K, Shibata Y, Yamamichi N, Tsutsumi H, Yoshinari M, Abiko Y, et al. Gene expression of $MC_3T_3-E_1$ cells on fibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J 2007;26:647-55.   DOI   ScienceOn
20 Auernheimer J, Zukowski D, Dahmen C, Kantlehner M, Enderle A, Goodman SL, et al. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chembiochem 2005;6:2034-40.   DOI   ScienceOn
21 Schwartz J, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Schwarzbauer JE, et al. Cell attachment and spreading on metal implant materials. Mater Sci Eng C-Biom Supramol Syst 2003;23:395-400.   DOI
22 Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999;20:2323-31.   DOI   ScienceOn
23 Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg- Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med 1997;8:867-72.   DOI   ScienceOn
24 Silverman BM, Wieghaus KA, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir 2005;21:225-8.   DOI   ScienceOn
25 Tanaka Y, Saito H, Tsutsumi Y, Doi H, Nomura N, Imai H, et al. Effect of pH on the interaction between zwitterions and titanium oxide. J Colloid Interface Sci 2009;330:138-43.   DOI   ScienceOn
26 Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, et al. Calcification by $MC_3T_3-E_1 $cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 2009;30:1281-6.   DOI   ScienceOn
27 Park JW, Kurashima K, Tustusmi Y, An CH, Suh JY, Doi H, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomater 2011;7:3222-9.   DOI   ScienceOn
28 Abe Y, Hiasa K, Takeuchi M, Yoshida Y, Suzuki K, Akagawa Y. New surface modification of titanium implant with phospho-amino acid. Dent Mater J 2005;24:536-40.   DOI   ScienceOn
29 De Giglio E, De Gennaro L, Sabbatini L, Zambonin G. Analytical characterization of collagen- and/or hydroxyapatite-modified polypyrrole films electrosynthesized on Tisubstrates for the development of new bioactive surfaces. J Biomater Sci Polym Ed 2001;12:63-76.   DOI   ScienceOn
30 De Giglio E, Cometa S, Satriano C, Sabbatini L, Zambonin PG. Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. J Biomed Mater Res A 2009;88:1048-57.
31 Cadotte AJ, DeMarse TB. Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays. J Neural Eng 2005;2:114-22.   DOI   ScienceOn
32 Belkas JS, Munro CA, Shoichet MS, Johnston M, Midha R. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 2005;26:1741-9.   DOI   ScienceOn
33 Indolfi L, Causa F, Netti PA. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J Mater Sci Mater Med 2009;20:1541-51.   DOI   ScienceOn
34 Fenelon AM, Breslin CB. The electropolymerization of pryrole at a CuNi electrode: corrosion protection properties. Corros Sci 2003;45:2837-2850.   DOI   ScienceOn
35 Mengoli G. Feasibility of polymer film coatings through electroinitiated polymerization in aqueous medium. Adv Polym Sci 1979;33:1-31.
36 De Giglio E, Guascito MR, Sabbatin L, Zambonin G. Electropolymerization of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials 2001;22:2609-16.   DOI   ScienceOn
37 Westall J, Hohl H. A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci 1980;12:265-94.   DOI   ScienceOn
38 Rammelt U, Nguyen PT, Plieth W. Corrosion protection by ultrathin films of conducting polymers. Electrochimica Acta 2003;48:1257-62.   DOI   ScienceOn
39 Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C-Biom Supramol Syst 2009;29:1702-8.   DOI
40 Parfitt GD. The surface of titanium dioxide. Prog Surf Membr Sci 1976;11:181-226.
41 Hanawa T. Titanium and Its Oxide Film: a substrate for formation of apatite. In: Davies JE, editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991. p. 49-61.
42 Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials 2005;26:327-37.   DOI   ScienceOn
43 Kim KH, Ramaswamy N. Electrochemical surface modification of titanium in dentistry. Dent Mater J 2009;28:20-36.   DOI   ScienceOn
44 Kelly EJ. Electrochemical-behavior of titanium. Mod Asp Electrochem 1982;14:319-424.
45 Healy TW, Fuerstenau DW. The oxide-water interface-Interreaction of the zero point of charge and the heat of immersion. J Colloid Sci 1965;20:376-86.   DOI   ScienceOn
46 Boehm HP. Acidic and basic properties of hydroxylated metal oxide surfaces. Discuss Faraday Soc 1971;(52):264-75.
47 Sundgren JE, Bodo P, Lundstrom I. Auger-electron spectroscopic studies of the interface between human-tissue and implants of titanium and stainless-steel. J Colloid Interface Sci 1986;110:9-20.   DOI   ScienceOn
48 Hanawa T, Ota M. Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 1991;12:767-74.   DOI   ScienceOn
49 Hanawa T, Ota M. Characterization of surface-film formed on titanium in electrolyte using XPS. Appl Surf Sci 1992;55:269-76.   DOI   ScienceOn
50 Hanawa T, Okuno O, Hamanaka H. Compositional change in surface of TI-ZR alloys in artificial bioliquid. J Jpn Inst Met 1992;56:1168-73.   DOI
51 Hiromoto S, Hanawa T, Asami K. Composition of surface oxide film of titanium with culturing murine fibroblasts L929. Biomaterials 2004;25:979-86.   DOI   ScienceOn
52 Huang NP, Csucs G, Emoto K, Nagasaki Y, Kataoka K, Textor M, et al. Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to $TiO_2$ surfaces. Langmuir 2002;18:252-8.   DOI   ScienceOn
53 Mahato RI. Biomaterials for delivery and targeting of proteins and nucleic acids. Boca Raton: CRC Press; 2005.
54 Kenausis GL, Voros J, Elbert DL, Huang NP, Hofer R, Ruiz-Taylor L, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem 2000;104:3298-309.   DOI
55 Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 2001;17:489-98.   DOI   ScienceOn
56 Zhang F, Kang ET, Neoh KG, Wang P, Tan KL. Surface modification of stainless steel by grafting of poly(ethylene glycol) for reduction in protein adsorption. Biomaterials 2001;22:1541-8.   DOI   ScienceOn
57 Tanaka Y, Saito H, Tsutsumi Y, Doi H, Imai H, Hanawa T. Active hydroxyl groups on surface oxide film of titanium, 316L stainless steel, and cobalt-chromium-molybdenum alloy and its effect on the immobilization of poly(ethylene glycol). Mater Trans 2008;49:805-11.   DOI   ScienceOn
58 Ito Y, Hasuda H, Sakuragi M, Tsuzuki S. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling. Acta Biomater 2007;3:1024-32.   DOI   ScienceOn
59 Tanaka Y, Doi H, Iwasaki Y, Hiromoto S, Yoneyama T, Asami K, et al. Electrodeposition of amine-terminated poly (ethylene glycol) to titanium surface. Mater Sci Eng C-Biom Supramol Syst 2007;27:206-12.   DOI
60 Tanaka Y, Doi H, Kobayashi E, Yoneyama T, Hanawa T. Determination of the immobilization manner of amineterminated poly(ethylene glycol) electrodeposited on a titanium surface with XPS and GD-OES. Mater Trans 2007;48:287-92.   DOI   ScienceOn
61 Tanaka Y, Matsuo Y, Komiya T, Tsutsumi Y, Doi H, Yoneyama T, et al. Characterization of the spatial immobilization manner of poly(ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion. J Biomed Mater Res A 2010;92:350-8.
62 Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, et al. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010;95:1105-13.
63 Balachnder N, Sukenik CN. Monolayer transformation by nucleophilic-substitution- applications to the creation of new monolayer assemblies. Langmuir 1990;6:1621-7.   DOI
64 Xiao SJ, Textor M, Spencer ND, Sigrist H. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir 1998;14:5507-16.   DOI   ScienceOn
65 Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 1989;111:321-35.   DOI   ScienceOn
66 Dubois LH, Nuzzo RG. Synthesis, structure, and properties of model organic-surfaces. Ann Rev Phys Chem 1992;43:437-63.   DOI   ScienceOn
67 Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96:1533-54.   DOI   ScienceOn
68 Gawalt ES, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Midwood KS, et al. Bonding organics to Ti alloys: facilitating human osteoblast attachment and spreading on surgical implant materials. Langmuir 2003;19:200-4.   DOI   ScienceOn
69 Brovelli D, Hahner G, Ruis L, Hofer R, Kraus G, Waldner A, et al. Highly oriented, self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces. Langmuir 1999;15:4324-7.   DOI   ScienceOn
70 Textor M, Ruiz L, Hofer R, Rossi K, Feldman K, Hahner G, et al. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 2000;16:3257-71.   DOI   ScienceOn
71 Fang JL, Wu NJ, Wang ZW, Li Y. XPS, AES and Raman studies of an antitarnish film on tin. Corrosion 1991;47:169-73.   DOI
72 Van Alsten JG. Self-assembled monolayers on engineering metals: structure, derivatization, and utility. Langmuir 1999;15:7605-14.   DOI   ScienceOn