Browse > Article
http://dx.doi.org/10.5051/jpis.2011.41.5.211

A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants  

Yun, Hee-Jung (Department of Periodontology, Yonsei University College of Dentistry)
Park, Jung-Chul (Department of Periodontology, Yonsei University College of Dentistry)
Yun, Jeong-Ho (Department of Periodontology, Yonsei University College of Dentistry)
Jung, Ui-Won (Department of Periodontology, Yonsei University College of Dentistry)
Kim, Chang-Sung (Department of Periodontology, Yonsei University College of Dentistry)
Choi, Seong-Ho (Department of Periodontology, Yonsei University College of Dentistry)
Cho, Kyoo-Sung (Department of Periodontology, Yonsei University College of Dentistry)
Publication Information
Journal of Periodontal and Implant Science / v.41, no.5, 2011 , pp. 211-217 More about this Journal
Abstract
Purpose: The marginal bone levels around implants following restoration are used as a reference for evaluating implant success and survival. Two design concepts that can reduce crestal bone resorption are the microthread and platform-switching concepts. The aims of this study were to analyze the placement of microthreaded and platform-switched implants and their short-term survival rate, as well as the level of bone around the implants. Methods: The subjects of this study were 27 patients (79 implants) undergoing treatment with microthreaded and platform-switched implants between October 2008 and July 2009 in the Dental Hospital of Yonsei University Department of Periodon-tology. The patients received follow-up care more than 6 months after the final setting of the prosthesis, at which time periapical radiographs were taken. The marginal bone level was measured from the reference point to the lowest observed point of contact between the marginal bone and the fixture. Comparisons were made between radiographs taken at the time of fixture installation and those taken at the follow-up visit. Results: During the study period (average of 11.8 months after fixture installation and 7.4 months after the prosthesis delivery), the short-term survival rate of microthreaded and platform-switched implants was 100% and the marginal bone loss around implants was $0.16{\pm}0.08$ mm, the latter of which is lower than the previously reported values. Conclusions: This short-term clinical study has demonstrated the successful survival rates of a microthread and platform-switched implant system, and that this system is associated with reduced marginal bone loss.
Keywords
Alveolar bone loss; Dental implants;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahlqvist J, Borg K, Gunne J, Nilson H, Olsson M, Astrand P. Osseointegrated implants in edentulous jaws: a 2-year longitudinal study. Int J Oral Maxillofac Implants 1990;5:155-63.
2 Atwood DA. Some clinical factors related to rate of resorption of residual ridges. 1962. J Prosthet Dent 2001;86:119-25.
3 Lekholom U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p.199-220.
4 Hollender L, Rockler B. Radiographic evaluation of osseointegrated implants of the jaws. Experimental study of the influence of radiographic techniques on the measurement of the relation between the implant and bone. Dentomaxillofac Radiol 1980;9:91-5.   DOI
5 Glauser R, Lundgren AK, Gottlow J, Sennerby L, Portmann M, Ruhstaller P, et al. Immediate occlusal loading of Brånemark TiUnite implants placed predominantly in soft bone: 1-year results of a prospective clinical study. Clin Implant Dent Relat Res 2003;5 Suppl 1:47-56.
6 Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989;4:333-40.
7 Branemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100.   DOI
8 Vanden Bogaerde L, Pedretti G, Dellacasa P, Mozzati M, Rangert B, Wendelhag I. Early function of splinted implants in maxillas and posterior mandibles, using Brånemark System Tiunite implants: an 18-month prospective clinical multicenter study. Clin Implant Dent Relat Res 2004;6:121-9.   DOI
9 Wennström JL, Ekestubbe A, Gröndahl K, Karlsson S, Lindhe J. Implant-supported single-tooth restorations: a 5-year prospective study. J Clin Periodontol 2005;32:567-74.   DOI   ScienceOn
10 Adell R, Lekholm U, Rockler B, Brånemark PI, Lindhe J, Eriksson B, et al. Marginal tissue reactions at osseointegrated titanium fixtures (I). A 3-year longitudinal prospective study. Int J Oral Maxillofac Surg 1986;15:39-52.   DOI   ScienceOn
11 Waerhaug J. Subgingival plaque and loss of attachment in periodontosis as evaluated on extracted teeth. J Periodontol 1977;48:125-30.   DOI
12 Lopez-Marí L, Calvo-Guirado JL, Martin-Castellote B, Gomez-Moreno G, Lopez-Mari M. Implant platform switching concept: an updated review. Med Oral Patol Oral Cir Bucal 2009;14:e450-4.
13 Kwon HJ, Lee DW, Park KH, Kim CK, Moon IS. Influence of the tooth- and implant-side marginal bone level on the interproximal papilla dimension in a single implant with a microthread, conical seal, and platform-switched design. J Periodontol 2009;80:1541-7.   DOI   ScienceOn
14 Calandriello R, Tomatis M, Vallone R, Rangert B, Gottlow J. Immediate occlusal loading of single lower molars using Brånemark System Wide-Platform TiUnite implants: an interim report of a prospective open-ended clinical multicenter study. Clin Implant Dent Relat Res 2003;5 Suppl 1:74-80.   DOI
15 Quirynen M, Bollen CM, Eyssen H, van Steenberghe D. Microbial penetration along the implant components of the Branemark system. An in vitro study. Clin Oral Implants Res 1994;5:239-44.   DOI   ScienceOn
16 Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol 1995;22:255-61.
17 Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405.   DOI   ScienceOn
18 Hürzeler M, Fickl S, Zuhr O, Wachtel HC. Peri-implant bone level around implants with platform-switched abutments: preliminary data from a prospective study. J Oral Maxillofac Surg 2007;65(7 Suppl 1):33-9.
19 Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73:322-33.   DOI   ScienceOn
20 Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996;11:811-8.
21 Abrahamsson I, Berglundh T. Tissue characteristics at microthreaded implants: an experimental study in dogs. Clin Implant Dent Relat Res 2006;8:107-13.   DOI   ScienceOn
22 Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.   DOI
23 Guo E. Mechanical properities of cortical bone and cancellous bone tissue. 2nd ed. Boca Raton: CRC Press; 2001. p.1-23.
24 Gonshor A, Goveia G, Sotirakis E. A prospective, multicenter, 4-year study of the ACE Surgical resorbable blast media implant. J Oral Implantol 2003;29:174-80.   DOI   ScienceOn
25 Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-70.   DOI   ScienceOn
26 Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 2008;79:2166-72.   DOI   ScienceOn
27 Friberg B, Grondahl K, Lekholm U. A new self-tapping Brånemark implant: clinical and radiographic evaluation. Int J Oral Maxillofac Implants 1992;7:80-5.
28 Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res 1990;1:33-40.   DOI   ScienceOn
29 Esposito M, Grusovin MG, Coulthard P, Thomsen P, Worthington HV. A 5-year follow-up comparative analysis of the efficacy of various osseointegrated dental implant systems: a systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 2005;20:557-68.
30 Bragger U, Hafeli U, Huber B, Hammerle CH, Lang NP. Evaluation of postsurgical crestal bone levels adjacent to non-submerged dental implants. Clin Oral Implants Res 1998;9:218-24.   DOI   ScienceOn
31 Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
32 Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002;29 Suppl3:197-212.   DOI
33 Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26:9-17.
34 Chang M, Wennstrom JL, Odman P, Andersson B. Implant supported single-tooth replacements compared to contralateral natural teeth. Crown and soft tissue dimensions. Clin Oral Implants Res 1999;10:185-94.   DOI   ScienceOn