Browse > Article

Inhibitory effects of Enterococcus faecium isolated from Korean infants on oral pathogens  

Jeong, Eun-Gyeong (Department of Periodontology, School of Dentistry, Wonkwang University)
Lee, Jong-Cheol (Department of Periodontology, School of Dentistry, Wonkwang University)
Seo, Jung-Yoon (Department of Periodontology, School of Dentistry, Wonkwang University)
Kim, Seong-Yoon (Department of Periodontology, School of Dentistry, Wonkwang University)
Kim, Wan-Su (Department of Periodontology, School of Dentistry, Wonkwang University)
Yun, Woo-Hyuk (Department of Periodontology, School of Dentistry, Wonkwang University)
Kim, Yun-Sang (Department of Periodontology, School of Dentistry, Wonkwang University)
Pi, Sung-Hee (Department of Periodontology, School of Dentistry, Wonkwang University)
You, Hyung-Keun (Department of Periodontology, School of Dentistry, Wonkwang University)
Shin, Hyung-Shik (Department of Periodontology, School of Dentistry, Wonkwang University)
Publication Information
Journal of Periodontal and Implant Science / v.38, no.1, 2008 , pp. 31-40 More about this Journal
Abstract
Purpose: The probiotic effects of lactic acid bacteria have widely been researched in diverse human pathogens, but only a few effects are reported against oral pathogens. The antimicrobial effects of the Enterococcus faecium 7413 isolated from Korean infants on the 9 pathogen including 6 oral streptococci were investigated the clinical use of the antimicrobial peptide for oral microflora control. Materials and Methods: E. faecium 7413 was identified by morphological, biochemical tests and 16S rDNA sequence analysis. Inhibitory effects of culture supernatants were determined for their ability to grow on agar plate containing pathogenic bacteria. Result: The culture supernatant of Enterococcus faecium 7413 showed inhibitory effects on oral pathogens, namely Streptococcus pyogenes KCTC 3556, S. pneumoniae KCTC 5080, S. mutans ATCC 25175, S. anginosus ATCC 33397, S. constellatus KCTC 3268, S. intermedius ATCC 27823 and Shigella flexneri KCTC 2008. Whereas it did not affect the multiplication of E. coli strains, KCTC 1041 and ATCC 43894. Conclusion: The data obtained in this study could be useful for future development of effective probiotics allowing prevention for oral pathogens.
Keywords
Enterococcus faecium; infant; oral pathogens;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guandalini S. Probiotics for children: use in diarrhea. J Clin Gastroenterol 2006;40:244-248   DOI   ScienceOn
2 Caglar E, Sandalli N, Twetman S, et al. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 2005;63317-63320
3 Zhou JS, Rutherfurd KJ, Gill HS. Inability of probiotic bacterial strains Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 to induce human platelet aggregation in vitro. J Food Prot 2005; 68:2459-2464   DOI   PUBMED
4 Stackebrandt E, Goebel BM. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994;44:846-849   DOI   ScienceOn
5 Thompson JD, Gibson TJ, Plewniak F et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acid Res 1997;24:4876-4882
6 Konisky J. Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol 1982;36:125-144   DOI   ScienceOn
7 Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40:722-756   PUBMED
8 Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 2005;113:188-196   DOI   ScienceOn
9 Kohler B, Bjarnason S. Mutans streptococci, lactobacilli and caries prevalence in 11- and 12-year-old Icelandic children. Community Dent Oral Epidemiol 1987;15:332- 335   DOI   ScienceOn
10 Aguilera Galaviz LA, Premoli G, Gonzalez A, Rodriguez RA. Caries risk in children: determined by levels of mutans streptococci and Lactobacillus. J Clin Pediatr Dent 2005; 29:329-333   DOI   PUBMED
11 Audisio MC, Oliver G, Apella MC. Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Int J Food Microbiol 2001;63:235-241   DOI   ScienceOn
12 Madsen K. Probiotics and the immune response. J Clin Gastroenterol 2006;40:232-234   DOI   ScienceOn
13 Tateda M, Shiga K, Saijo S et al. Streptococcus anginosus in head and neck squamous cell carcinoma: implication in carcinogenesis. Int J Mol Med 2000;6:699-703   PUBMED
14 Chung J, Ha ES, Park HR, Kim S. Isolation and characterization of Lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Microbiol Immunol 2004;19:214-216   DOI   ScienceOn
15 Williams RC, Offenbacher S. Periodontal medicine: the emergence of a new branch of periodontology. Periodontol 2000;23:9-12   DOI   ScienceOn
16 Whatmore AM, Efstratiou A, Pickerill AP et al. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of 'Atypical' pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 2000;68(3):1374-1382   DOI
17 Beck JD, Offenbacher S. The association between periodontal diseases and cardiovascular diseases: a state-of-the science review. Ann Periodontol 2001;6:9-15   DOI   ScienceOn
18 Parker RB. Probiotics, the other half of the antibiotic story. Ani Nutr Health 1974;29:4-8
19 Schillinger U, Lucke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 1989;55:1901-1906   PUBMED
20 Lee HO, Lee KH, Park NK et al. Antibacterial Effects of Sophora flavescens on Streptococcus mutans. The Korean Journal of Food And Nutrition 2000;13:539-546
21 Shiga K, Tateda M, Saijo S et al. Takasaka T, Miyagi T. Presence of Streptococcus infection in extraoropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001;8:245-248   PUBMED
22 Lund B, Adamsson I, Edlund C. Gastrointestinal transit survival of an Enterococcus faecium probiotic strain administered with or without vancomycin. Int J Food Microbiol 2002;77:109-115   DOI   ScienceOn
23 Shinzato T, Saito, A. The Streptococcus milleri group as a cause of pulmonary infections. Clin Infect Dis 1995;21: 238-243   DOI   PUBMED   ScienceOn
24 Shaw L. Effects of probiotics on atopic dermatitis. Arch Dis Child 2006;91:373   DOI   ScienceOn
25 Lund B, Edlund C, Barkholt L et al. Impact on human intestinal microflora of an Enterococcus faecium probiotic and vancomycin. Scand J Infect Dis 2000;32:627-632   DOI
26 Benyacoub J, Perez PF, Rochat F et al. Enterococcus faecium SF68 enhances the immune response to Giardia intestinalis in mice. J Nutr 2005;135:1171-1176   DOI   PUBMED
27 Joerger MC, Klaenhammer TR. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 1986;167:439-446   DOI   PUBMED
28 Ruoff KL. Recent taxonomic changes in the genus Enterococcus. Eur J Clin Microbiol Infect Dis 1990;9(2): 75-79   DOI