Browse > Article

Osteoblast adhesion and differentiation on magnesium titanate surface  

Choi, Seung-Min (Department of Periodontics, College of Dentistry, Kangnung National University)
Lee, Jae-Kwan (Department of Periodontics, College of Dentistry, Kangnung National University)
Ko, Sung-Hee (Department of Phamacology, College of Dentistry, Kangnung National University)
Um, Heung-Sik (Department of Periodontics, College of Dentistry, Kangnung National University)
Chang, Beom-Seok (Department of Periodontics, College of Dentistry, Kangnung National University)
Publication Information
Journal of Periodontal and Implant Science / v.35, no.4, 2005 , pp. 851-861 More about this Journal
Abstract
The nature of the implant surface can directly influence cellular response, ultimately affecting the rate and quality of new bone tissue formation. The aim of this in vitro study was to investigate if human osteoblast-like cells, Saos-2, would respond differently when plated on disks of magnesium titanate and machined titanium. Magnesium titanate disks were prepared using Micro Arc Oxidation(MAO) methods. Control samples were machined commercially pure titanium disks. The cell adhesion, proliferation and differentiation were evaluated by measuring cell number, and alkaline phosphatase(ALPase) activity at 1 day and 6 day after plating on the titanium disks. Measurement of cell number and ALPase activity in Saos-2 cells at 1 day did not demonstrate any difference between machined titanium and magnesium titanate. When compared to machined titanium disks, the number of cells was reduced on the magnesium titanate disks at 6 day, while ALPase activity was more pronounced on the magnesium titanate. Enhanced differentiation of cells grown on magnesium titanate samples was indicated by decreased cell proliferation and increased ALPase activity.
Keywords
Magnesium titanate; Osteoblast cell differentiation; Alkaline phosphatase activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Williams DF. Corrosion of implant materials. Ann Rev Mater Sci 1976:6: 237-65   DOI   ScienceOn
2 Testori T. Wiseman L. Woolfe S. Porter SS. A prospective multicenter clinical study of the osseotite implant: four-year interim report. Int J Oral Maxillofac Implants 2001; 16: 193-200
3 Ishizawa H. Ogino M. Formation and characterization of anodic titanium oxide films. J Biomed Mater Res 1995: 29:65-72   DOI   ScienceOn
4 Ong JL, Chan DCN. Hydroxyapatite and their use as coatings in dental Implants: a review. Crit Rev Biomed Eng 2000: 28: 667-707   PUBMED
5 Larsson C, Emanuelsson L, Thomsen P, Ericson L, Aronsson B, Rodahl M. Kasemo B, Lausmaa J. Bone response to surfacemodi .ed titanium implants: studies on the tissue response after one year to machined and electropolished implants with different oxide thicknesses. J Mater Sci Mater Med 1997: 8:721-729   DOI   ScienceOn
6 Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K, Early bone formation around calcium-ion-implanted titanium inserted into rat tibiae. J Biomed Mater Res 1997: 36: 131-6   DOI   ScienceOn
7 Albrektsson T, Johansson C, Lundgren AK, Sul YT, Gottlow J. Experimental studies on oxidized implants, A histomorphometrical and biomechanical analysis. Appl Osseointegration Res 2000; 1 :21-24
8 Sul YT. Johansson CB, Kang YM, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemically anion S and P incorporation. Clin Implant Dent Relat Res 2002: 4:478-87
9 Sul YT. Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002; 17: 625-634
10 Cooper LF, Masuda T, Yliheikkila PK. Felton DA. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants 1998: 13: 163-74
11 Yan WQ, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. Bonding of chemically treated titanium implants to bone. J Biomed Mater Res 1997: 37:267-75   DOI   ScienceOn
12 Jansen JA. Wolke JG, Swann S. Van der Waerden JP. Application of magnetron sputtering for producing ceramic coatings on implant materials. Clin Oral Implants Res 1993:4:28-34   DOI   ScienceOn
13 Haddow DB, James PF. Van Noort R. Sol. gel derived calcium phosphate coatings for biomedical applications. J Sol. Gel Sci Technol 1998: 13: 261-265   DOI   ScienceOn
14 Lausmaa J, Kasemo B, Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 1990;45: 133-46
15 Nishiguchi S, Nakamura T, Kobayashi M, Kim HY, Miyaji F, Kokubo T. The effect of heat treatment on bone- bonding ability of alkali-treated titanium. Biomaterials 1999:20:491-500   DOI   ScienceOn
16 Zittel' H, Plenk HJ. The electrochemical behaviour of metallic implant materials as indicator of their biocompatibility. J Biomed Mater Res 1987:21:881-96   DOI   ScienceOn
17 Sul YT, Johansson CB, Jeong Y, Roser K, Wennerberg A, Albrektsson T. Oxidised implants and their influence on the bone response. J Mater Sci Mater Med 2001; 12: 1025-1031   DOI   ScienceOn
18 Olefjord I, Hansson S. Surface analysis of four dental implant systems. Int J Oral Maxillofac Impl 1993;8:32-40
19 Tengvall P, Lundström I. Physicochemical considerations of titanium as a biomaterial. Clin Mater 1992:9: 115-34   DOI   ScienceOn
20 Bowers. K.T.. Keller, J.C. Randolph, B.A., Wick. D.G., Michaels, C.M. Optimization of surface micromorphology for enhanced psteoblast response in vitro. Int J Oral Maxillofac Implants 1992; 7(3) :302-310   PUBMED
21 Dean DD, Schwartz Z, Bonewald LF, Muniz OE. Morales SM, Gomez R. Brooks BP, Qiao M, Howell DS, Boyan BD. Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycandegrading metallo-proteinases after addition of $\beta$-glycerophosphate and ascorbic acid. Calcif Tissue Int 1994:54: 399-408   DOI   ScienceOn
22 Kwon, S.Y., Takei, H., Pioletti. D.P., Lin, T., Ma, Q.J., Akeson, W.H. Wood, D.J., Sung, K.L. Titanium particles inhibit osteoblast adhesion to fibronectin-coated substrates. J. Orthop. Res. 2000: 18(2) :203-211   DOI   ScienceOn
23 Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium Implants up to dielectric breakdown: the oxide thickness, micropore con.gurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002; 23: 491-501   DOI   ScienceOn
24 Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990: 143:420-30   DOI   PUBMED
25 Skripitz R, Aspenberg P. Tensile bond between bone and titanium. Acta Orthop Scand 1998:69:2-6   DOI
26 Mould AP, Akiyama SK. and Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for $Mn^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. J Biol Chem 1995:270:26270-26277   DOI   ScienceOn
27 Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res 1979:13:217-50   DOI   ScienceOn
28 Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res 2000:52: 738-747   DOI   ScienceOn
29 Sul YT, Johansson CB, Roser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodized implants. Biomaterials 2002:23:1809-19   DOI   ScienceOn
30 Albrektsson T. Hydroxyapatite-coated implants: a case against their use. J Oral Maxillofac Surg 1998: 56: 1312-26   DOI   ScienceOn
31 Henry P, Tan AE, Allan BP. Removal torque comparison of TiUnite and turned implants in the Greyhound dog mandible. Appl Osseointegration Res 2000; 1: 15-17
32 Johansson CB. On tissue reactions to metal implants. Thesis, University of Göteborg, Sweden, 1991
33 Palmer RM, Palmer PJ, Smith BJ. A 5-year prospective study of astra single tooth implants. Clin Oral Implants Res 2000;11:179-182   DOI   PUBMED   ScienceOn
34 Kieswetter, K. Schwartz, Z. Dean, D.D., Boyan. B.D. : The role of implant surface characteristics in the healing of bone. Cret. Rev. oral Biol. Med. 1996;7(4): 329-345   DOI   ScienceOn
35 Burgess AV. Story BJ, La D. Wagner WR, LeGeros JP. Highly crystalline Mp-1(TM) hydroxylapatite coating Part I: in vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings. Clin Oral Implants Res 1999: 10:245-56   DOI   ScienceOn
36 Kasemo B, Lausmaa J. Aspect of surface physics on titanium implants. Swed Dent J 1983; 28 (Suppl.) : 19-36
37 Ericsson, I., Johansson. C.B .. Bystedt, H., Norton. M.R. A histomorphometric evaluation of bone-to-implant contact on machine prepared and roughened titanium dental implants. A pilot study in the dog. Clin. Oral Implants Res. 1994; 5(4): 202-206   DOI   ScienceOn
38 Ichikawa T, Hanawa T, Ukai H, Murakami K, Three-dimensional bone response to commercially pure titanium, hydroxyapatite, and calcium-ion-mixing titanium in rabbits. Int J Oral Maxillofac Implants 2000: 15:231-8
39 Gailit J and Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem 1988;263: 12927-12932   PUBMED
40 Davies JE. In vitro modeling of the bone /implant interface. Anat Rec 1996: 245: 426-45   DOI   PUBMED   ScienceOn
41 Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003:24:3893-3907   DOI   PUBMED   ScienceOn
42 Sul YT, Johansson CB, Jeong Y. Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxide. Clin Oral Implants Res 2002; 13:252-259   DOI   ScienceOn
43 Ali SY. Mechanisms of calcification. In : Owen R. Goodfellow J. Bollough P, editors. Scientific foundation of orthopaedics and traumatology. London: Heinemann, 1984: 175-95
44 Deportet D. Watson P, Pharoah M, Levy D, Todescan R. Five to six-year results of a prospective clinical trial using the ENDOPORE dental implant and a mandibular overdenture. Clin Oral Implants Res 1999:10:95-102   DOI   ScienceOn
45 Lo WJ, Grant DM. Ball MD, Welsh BS, Howdle SM. Antonov EN, Bagratashvili VN, Popov VK. Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. J Biomed Mater Res 2000:50: 536-45   DOI   ScienceOn
46 Hench LL, Kokubo T. Properties of bioactive glasses and glassceramics. Handbook of biomaterial properties. In: Black J, Hastings G, editors. Handbook of biomaterial properties. London: Chapman & Hall: 1998. p. 355-63
47 Ishizawa H, Fujino M. Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide .lms containing Ca and P. J Biomed Mater Res 1995: 29: 1459-68   DOI   ScienceOn
48 Branemark PI. Hansson BO, Adell R, Breine U, Lindström U, Hallen O, Oman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 1977; 16 (Suppl. 1):7-127
49 L J, Hastings GW. Oxide ceramics: inert ceramic materials in medicine and dentistry. In: Black J, Hastings G. editors. Handbook of biomaterial properties. London: Chapman & Hall: 1998. p. 340-354
50 Campbell PA. Gledhill HC, Brown SR, Turner IG. Vacuum plasma sprayed hydroxyapatite coatings on titanium alloy substrates: surface characterization and observation of dissolution processes using atomic force microscopy. J Vac Sci Technol B 1996: 14: 1167-72   DOI
51 Gottlander M. On hard tissue reactions to hydroxyapatite-coated titanium implants. Ph.D. thesis, Department of Biomaterials/Handicap Research, University of G. oteborg, Sweden, 1994
52 Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini N, Torricelli P, Vicentini B. In vitro and vivo behaviour of Ca and P-enriched anodized titanium. Biomaterials 1999:20 : 1587-94   DOI   ScienceOn
53 Sul YT, Johansson CB, Jeong Y. Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 2001: 23: 329-46   DOI   ScienceOn
54 Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK. Hirt HP, Snetivy D, Nolte LP. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 1999:45: 75-83   DOI   ScienceOn
55 Wennerberg, A.. Ektessabi. A.. Albrektsson. T.. Johansson. C.. Andersson. B. A 1-year follow up of implants of differing surface roughness placed in rabbit bone. Int. J. Oral Maxillofac. Implants 1997:12(4):486-494
56 Ektessabi AM. Ion beam processing of bio-ceramics. Nucl Instrum Methods Phys Res B 1995:99:610-3   DOI   ScienceOn
57 Larsson. C., Thomsen. P., Lausmaa, J.. Rodahl. M., Kasemo. B.. Ericson. L.E Bone response to surface modified titanium implants : studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 1994: 15(3): 1062-1074   DOI   ScienceOn
58 Lohmann, C.H., Sagun, R. Jr.. Sylvia, V.L., Cochran, D.L., Dean. D.D.. Boyan B.D., Schwartz. Z. Surface roughness modulates the response of MG63 osteoblast-like cells to 1.25-(OH) (2)D(3) through regulation of phospholipase A (2) activity and activation of protein kinase A. J. Biomed. Mater. Res., 1999; 47 (2) : 139-151   DOI   ScienceOn