1 |
M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), no. 3-4, 297-306.
DOI
|
2 |
M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387
DOI
|
3 |
B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI, 2006. https://doi.org/10.1090/gsm/077
DOI
|
4 |
G. T. Ganchev and A. V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (1986), no. 5, 31-34.
|
5 |
R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
DOI
|
6 |
D. M. Naik and V. Venkatesha, η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 9, 1950134, 18 pp. https://doi.org/10.1142/S0219887819501342
DOI
|
7 |
B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
|
8 |
M. M. Praveena and C. S. Bagewadi, On almost pseudo Bochner symmetric generalized complex space forms, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 32 (2016), no. 1, 149-159.
|
9 |
A. M. Blaga, A. Ishan, and S. Deshmukh, A note on solitons with generalized geodesic vector field, Symmetry 13 (2021), no. 7, 1104. https://doi.org/10.3390/sym13071104
DOI
|
10 |
M. M. Praveena, C. S. Bagewadi, and M. R. Krishnamurthy, Solitons of Kahlerian space-time manifolds, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150021, 12 pp. https://doi.org/10.1142/S0219887821500213
DOI
|
11 |
Venkatesha and H. A. Kumara, A study of conformally flat quasi-Einstein spacetimes with applications in general relativity, Kragujevac J. Math. 45 (2021), no. 3, 477-489. https://doi.org/10.46793/kgjmat2103.477v
DOI
|
12 |
V. R. Kaigorodov, Structure of the curvature of space-time, in Problems in geometry, Vol. 14, 177-204, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1983.
|
13 |
A. M. Blaga, On gradient η-Einstein solitons, Kragujevac J. Math. 42 (2018), no. 2, 229-237. https://doi.org/10.5937/kgjmath1802229b
DOI
|
14 |
G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
DOI
|
15 |
J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212. https://doi.org/10.2748/tmj/1245849443
DOI
|
16 |
U. C. De and G. C. Ghosh, On weakly Ricci symmetric spacetime manifolds, Rad. Mat. 13 (2004), no. 1, 93-101.
|
17 |
U. C. De and A. K. Gazi, On almost pseudo symmetric manifolds, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 51 (2008), 53-68 (2009).
|
18 |
K. M. Haradhan, Minkowski geometry and space-time manifold in relativity, J. Environmental Treatment Techniques 1 (2013), no. 2, 101-110.
|
19 |
D. M. Naik, V. Venkatesha, and H. A. Kumara, Ricci solitons and certain related metrics on almost co-Kaehler manifolds, Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 4, 402-417.
DOI
|
20 |
M. M. Praveena and C. S. Bagewadi, On almost pseudo symmetric Kahler manifolds, Palest. J. Math. 6 (2017), Special Issue II, 272-278.
|
21 |
A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50 (2020), no. 1, 41-53. https://doi.org/10.1216/rmj.2020.50.41
DOI
|
22 |
A. A. Shaikh, D. W. Yoon, and S. K. Hui, On quasi-Einstein spacetimes, Tsukuba J. Math. 33 (2009), no. 2, 305-326. https://doi.org/10.21099/tkbjm/1267209423
DOI
|
23 |
Mohd. D. Siddiqi and S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 6, 2050083, 18 pp. https://doi.org/10.1142/S0219887820500838
DOI
|
24 |
Venkatesha and H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat. 30 (2019), no. 5-6, 725-736. https://doi.org/10.1007/s13370-019-00679-y
DOI
|
25 |
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
|
26 |
A. K. Raychaudhuri, S. Banerji, and A. Banerjee, General Relativity, Astrophysics, and Cosmology, Astronomy and Astrophysics Library, Springer-Verlag, New York, 1992.
|
27 |
N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), no. 1, 15-21.
|