Browse > Article
http://dx.doi.org/10.4134/CKMS.c200471

SOLITONS OF KÄHLERIAN NORDEN SPACE-TIME MANIFOLDS  

Mundalamane, Praveena Manjappa (Department of Mathematics M. S. Ramaiah Institute of Technology (Affiliated to VTU))
Shanthappa, Bagewadi Channabasappa (Department of Mathematics Kuvempu University)
Siddesha, Mallannara Siddalingappa (Department of Mathematics Jain University)
Publication Information
Communications of the Korean Mathematical Society / v.37, no.3, 2022 , pp. 813-824 More about this Journal
Abstract
We study solitons of Kählerian Norden space-time manifolds and Bochner curvature tensor in almost pseudo symmetric Kählerian space-time manifolds. It is shown that the steady, expanding or shrinking solitons depend on different relations of energy density/isotropic pressure, the cosmological constant, and gravitational constant.
Keywords
Kahlerian Norden space-time manifolds; solitons; almost pseudo symmetric manifold;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen 57 (2000), no. 3-4, 297-306.   DOI
2 M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032. https://doi.org/10.1007/BF02302387   DOI
3 B. Chow, P. Lu, and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI, 2006. https://doi.org/10.1090/gsm/077   DOI
4 G. T. Ganchev and A. V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (1986), no. 5, 31-34.
5 R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419   DOI
6 D. M. Naik and V. Venkatesha, η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 9, 1950134, 18 pp. https://doi.org/10.1142/S0219887819501342   DOI
7 B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
8 M. M. Praveena and C. S. Bagewadi, On almost pseudo Bochner symmetric generalized complex space forms, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 32 (2016), no. 1, 149-159.
9 A. M. Blaga, A. Ishan, and S. Deshmukh, A note on solitons with generalized geodesic vector field, Symmetry 13 (2021), no. 7, 1104. https://doi.org/10.3390/sym13071104   DOI
10 M. M. Praveena, C. S. Bagewadi, and M. R. Krishnamurthy, Solitons of Kahlerian space-time manifolds, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150021, 12 pp. https://doi.org/10.1142/S0219887821500213   DOI
11 Venkatesha and H. A. Kumara, A study of conformally flat quasi-Einstein spacetimes with applications in general relativity, Kragujevac J. Math. 45 (2021), no. 3, 477-489. https://doi.org/10.46793/kgjmat2103.477v   DOI
12 V. R. Kaigorodov, Structure of the curvature of space-time, in Problems in geometry, Vol. 14, 177-204, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1983.
13 A. M. Blaga, On gradient η-Einstein solitons, Kragujevac J. Math. 42 (2018), no. 2, 229-237. https://doi.org/10.5937/kgjmath1802229b   DOI
14 G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021   DOI
15 J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212. https://doi.org/10.2748/tmj/1245849443   DOI
16 U. C. De and G. C. Ghosh, On weakly Ricci symmetric spacetime manifolds, Rad. Mat. 13 (2004), no. 1, 93-101.
17 U. C. De and A. K. Gazi, On almost pseudo symmetric manifolds, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 51 (2008), 53-68 (2009).
18 K. M. Haradhan, Minkowski geometry and space-time manifold in relativity, J. Environmental Treatment Techniques 1 (2013), no. 2, 101-110.
19 D. M. Naik, V. Venkatesha, and H. A. Kumara, Ricci solitons and certain related metrics on almost co-Kaehler manifolds, Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 4, 402-417.   DOI
20 M. M. Praveena and C. S. Bagewadi, On almost pseudo symmetric Kahler manifolds, Palest. J. Math. 6 (2017), Special Issue II, 272-278.
21 A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50 (2020), no. 1, 41-53. https://doi.org/10.1216/rmj.2020.50.41   DOI
22 A. A. Shaikh, D. W. Yoon, and S. K. Hui, On quasi-Einstein spacetimes, Tsukuba J. Math. 33 (2009), no. 2, 305-326. https://doi.org/10.21099/tkbjm/1267209423   DOI
23 Mohd. D. Siddiqi and S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 6, 2050083, 18 pp. https://doi.org/10.1142/S0219887820500838   DOI
24 Venkatesha and H. A. Kumara, Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat. 30 (2019), no. 5-6, 725-736. https://doi.org/10.1007/s13370-019-00679-y   DOI
25 K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
26 A. K. Raychaudhuri, S. Banerji, and A. Banerjee, General Relativity, Astrophysics, and Cosmology, Astronomy and Astrophysics Library, Springer-Verlag, New York, 1992.
27 N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), no. 1, 15-21.