1 |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.2307/1995025
DOI
|
2 |
St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. https://doi.org/10.1007/BF02566116
DOI
|
3 |
N. Yagmur, Hardy space of Lommel functions, Bull. Korean Math. Soc. 52 (2015), no. 3, 1035-1046. https://doi.org/10.4134/BKMS.2015.52.3.1035
DOI
|
4 |
Y. J. Sim, O. S. Kwon, and N. E. Cho, Geometric properties of Lommel functions of the first kind, Symmetry 10 (2018), 445.
DOI
|
5 |
B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math. 10 (1971), 6-16. https://doi.org/10.1007/BF02771515
DOI
|
6 |
A. Baricz, D. K. Dimitrov, H. Orhan, and N. Yagmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3355-3367. https://doi.org/10.1090/proc/13120
DOI
|
7 |
P. Eenigenburg, S. S. Miller, P. T. Mocanu, and M. O. Reade, On a Briot-Bouquet differential subordination, Rev. Roumaine Math. Pures Appl. 29 (1984), no. 7, 567-573.
|
8 |
S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
|